Loading…
Robustness and uncertainties in global multivariate wind-wave climate projections
Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst e...
Saved in:
Published in: | Nature climate change 2019-09, Vol.9 (9), p.711-718 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst existing global wave climate projections. Here, assessing the first coherent, community-driven, multi-method ensemble of global wave climate projections, we demonstrate widespread ocean regions with robust changes in annual mean significant wave height and mean wave period of 5–15% and shifts in mean wave direction of 5–15°, under a high-emission scenario. Approximately 50% of the world’s coastline is at risk from wave climate change, with ~40% revealing robust changes in at least two variables. Furthermore, we find that uncertainty in current projections is dominated by climate model-driven uncertainty, and that single-method modelling studies are unable to capture up to ~50% of the total associated uncertainty.
There are large uncertainties in wind-wave climate projections that need to be resolved to allow adaptation planning. A multi-method ensemble of global wave climate projections shows robust changes in wave height, period and direction that put 50% of the global coast at risk. |
---|---|
ISSN: | 1758-678X 1758-6798 |
DOI: | 10.1038/s41558-019-0542-5 |