Loading…

Light-Controlled Nanoparticle Collision Experiments

Electrochemical monitoring of catalytically amplified collisions of individual metal nanoparticles (NP) with ultramicroelectrodes (UME) has been extensively used to study electrocatalysis, mass-transport, and charge-transfer processes at the single NP level. More recently, photoelectrochemical colli...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2020-04, Vol.11 (8), p.2972-2976
Main Authors: Wang, Qian, Bae, Je Hyun, Nepomnyashchii, Alexander B, Jia, Rui, Zhang, Suojiang, Mirkin, Michael V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrochemical monitoring of catalytically amplified collisions of individual metal nanoparticles (NP) with ultramicroelectrodes (UME) has been extensively used to study electrocatalysis, mass-transport, and charge-transfer processes at the single NP level. More recently, photoelectrochemical collision experiments were carried out with semiconductive NPs. Here, we introduce two new types of light-controlled nanoimpact experiments. The first experiment involves localized photodeposition of catalyst (Pt) on TiO2 NPs with a glass-sheathed carbon fiber simultaneously serving as the light guide and collector UME. The collisions of in situ prepared Pt@TiO2 NPs with the carbon surface produced blips of water oxidation current, while the activity of pristine TiO2 NPs was too low to yield measurable signal. In another experiment, collisions of catalytic (Ir oxide) NPs with the semiconductor (Nb doped n-type TiO2 rutile single crystal) electrode are monitored by measuring the photocurrent of water oxidation.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c00585