Loading…

Stochastic particle production in a de Sitter background

We explore non-adiabatic particle production in a de Sitter universe for a scalar spectator field, by allowing the effective mass m2(t) of this field and the cosmic time interval between non-adiabatic events to vary stochastically. Two main scenarios are considered depending on the (non-stochastic)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2019-05, Vol.2019 (5), p.12-12
Main Authors: Garcia, Marcos A.G., Amin, Mustafa A., Carlsten, Scott G., Green, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore non-adiabatic particle production in a de Sitter universe for a scalar spectator field, by allowing the effective mass m2(t) of this field and the cosmic time interval between non-adiabatic events to vary stochastically. Two main scenarios are considered depending on the (non-stochastic) mass M of the spectator field: the conformal case with M2=2H2, and the case of a massless field. We make use of the transfer matrix formalism to parametrize the evolution of the system in terms of the “occupation number”, and two phases associated with the transfer matrix; these are used to construct the evolution of the spectator field. Assuming short-time interactions approximated by Dirac-delta functions, we numerically track the change of these parameters and the field in all regimes: sub- and super-horizon with weak and strong scattering. In all cases a log-normally distributed field amplitude is observed, and the logarithm of the field amplitude approximately satisfies the properties of a Wiener process outside the horizon. We derive a Fokker-Planck equation for the evolution of the transfer matrix parameters, which allows us to calculate analytically non-trivial distributions and moments in the weak-scattering limit.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2019/05/012