Loading…
First-order ferromagnetic transitions of lanthanide local moments in divalent compounds: An itinerant electron positive feedback mechanism and Fermi surface topological change
Around discontinuous (first-order) magnetic phase transitions, the strong caloric response of materials to the application of small fields is widely studied for the development of solid-state refrigeration. Typically strong magnetostructural coupling drives such transitions and the attendant substan...
Saved in:
Published in: | Physical review. B 2020-05, Vol.101 (17), p.1, Article 174437 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Around discontinuous (first-order) magnetic phase transitions, the strong caloric response of materials to the application of small fields is widely studied for the development of solid-state refrigeration. Typically strong magnetostructural coupling drives such transitions and the attendant substantial hysteresis dramatically reduces the cooling performance. In this context, we describe a purely electronic mechanism which pilots a first-order paramagnetic-ferromagnetic transition in divalent lanthanide compounds and which explains the giant nonhysteretic magnetocaloric effect recently discovered in a Eu2In compound. There is a positive feedback between the magnetism of itinerant valence electrons and the ferromagnetic ordering of local f-electron moments, which appears as a topological change to the Fermi surface. The origin of this electronic mechanism stems directly from Eu's divalency, which explains the absence of a similar discontinuous transition in Gd2In. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.101.174437 |