Loading…
Instantons and Hilbert functions
We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads, and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a nonvani...
Saved in:
Published in: | Physical review. D 2020-07, Vol.102 (2), p.1, Article 026019 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads, and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a nonvanishing instanton superpotential. These show that nonvanishing instanton superpotentials are rare and require a specific pattern for the bundle construction. For the class of monad and extension bundles with this pattern, we derive a sufficient criterion for nonvanishing instanton superpotentials based on an affine Hilbert function. This criterion shows that a nonzero instanton superpotential is common within this class. The criterion can be checked using commutative algebra methods only and depends on the topological data defining the Calabi-Yau X and the vector bundle V. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.102.026019 |