Loading…
A disordered rock salt anode for fast-charging lithium-ion batteries
Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications 1 – 3 . However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy den...
Saved in:
Published in: | Nature (London) 2020-09, Vol.585 (7823), p.63-67 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63 |
container_end_page | 67 |
container_issue | 7823 |
container_start_page | 63 |
container_title | Nature (London) |
container_volume | 585 |
creator | Liu, Haodong Zhu, Zhuoying Yan, Qizhang Yu, Sicen He, Xin Chen, Yan Zhang, Rui Ma, Lu Liu, Tongchao Li, Matthew Lin, Ruoqian Chen, Yiming Li, Yejing Xing, Xing Choi, Yoonjung Gao, Lucy Cho, Helen Sung-yun An, Ke Feng, Jun Kostecki, Robert Amine, Khalil Wu, Tianpin Lu, Jun Xin, Huolin L. Ong, Shyue Ping Liu, Ping |
description | Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications
1
–
3
. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt
4
,
5
Li
3+
x
V
2
O
5
can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li
+
reference electrode. The increased potential compared to graphite
6
,
7
reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li
3
V
2
O
5
anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li
3
VO
4
and LiV
0.5
Ti
0.5
S
2
)
8
,
9
. Further, disordered rock salt Li
3
V
2
O
5
can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li
3
V
2
O
5
to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
A vanadium-based lithium-rich disordered rock salt oxide is shown to work as a low-potential anode with rapid intercalation kinetics for lithium-ion batteries. |
doi_str_mv | 10.1038/s41586-020-2637-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1659690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440496166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63</originalsourceid><addsrcrecordid>eNp1kTtPxDAQhC0EguPgB9CgCBoag19x7BLxlpBorrccZ3NnyMVgOwX_npxygIREtcV-M6PdQeiEkktKuLpKgpZKYsIIZpJXWO6gGRWVxEKqahfNCGEKE8XlATpM6ZUQUtJK7KMDzlSlS8Jn6Pa6aHwKsYEITRGDeyuS7XJh-9BA0YZYtDZl7FY2Ln2_LDqfV35YYx_6orY5Q_SQjtBea7sEx9s5R4v7u8XNI35-eXi6uX7GTlQ6Y02qxiplRaOgVrVlivDSacY5lRyso8BqSktRWiUsBa6ZBi6dk3VTuVbyOTqbbEPK3iTnM7iVC30PLhsqSy01GaGLCXqP4WOAlM3aJwddZ3sIQzJMcK0VVYyO6Pkf9DUMsR8vGClBhJZUblLpRLkYUorQmvfo1zZ-GkrMpgYz1WDGGsymBrPRnG6dh3oNzY_i--8jwCYgjat-CfE3-n_XL--1kKU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440496166</pqid></control><display><type>article</type><title>A disordered rock salt anode for fast-charging lithium-ion batteries</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Liu, Haodong ; Zhu, Zhuoying ; Yan, Qizhang ; Yu, Sicen ; He, Xin ; Chen, Yan ; Zhang, Rui ; Ma, Lu ; Liu, Tongchao ; Li, Matthew ; Lin, Ruoqian ; Chen, Yiming ; Li, Yejing ; Xing, Xing ; Choi, Yoonjung ; Gao, Lucy ; Cho, Helen Sung-yun ; An, Ke ; Feng, Jun ; Kostecki, Robert ; Amine, Khalil ; Wu, Tianpin ; Lu, Jun ; Xin, Huolin L. ; Ong, Shyue Ping ; Liu, Ping</creator><creatorcontrib>Liu, Haodong ; Zhu, Zhuoying ; Yan, Qizhang ; Yu, Sicen ; He, Xin ; Chen, Yan ; Zhang, Rui ; Ma, Lu ; Liu, Tongchao ; Li, Matthew ; Lin, Ruoqian ; Chen, Yiming ; Li, Yejing ; Xing, Xing ; Choi, Yoonjung ; Gao, Lucy ; Cho, Helen Sung-yun ; An, Ke ; Feng, Jun ; Kostecki, Robert ; Amine, Khalil ; Wu, Tianpin ; Lu, Jun ; Xin, Huolin L. ; Ong, Shyue Ping ; Liu, Ping ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><description>Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications
1
–
3
. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt
4
,
5
Li
3+
x
V
2
O
5
can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li
+
reference electrode. The increased potential compared to graphite
6
,
7
reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li
3
V
2
O
5
anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li
3
VO
4
and LiV
0.5
Ti
0.5
S
2
)
8
,
9
. Further, disordered rock salt Li
3
V
2
O
5
can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li
3
V
2
O
5
to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
A vanadium-based lithium-rich disordered rock salt oxide is shown to work as a low-potential anode with rapid intercalation kinetics for lithium-ion batteries.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2637-6</identifier><identifier>PMID: 32879503</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/4077/4079/891 ; 639/638/675 ; Anodes ; Batteries ; Charging ; Decay rate ; Dendritic structure ; Discharge ; Electrodes ; Energy ; ENERGY STORAGE ; Flux density ; Fourier transforms ; Halites ; Humanities and Social Sciences ; Intercalation ; Lithium ; Lithium-ion batteries ; lithium-ion battery ; Low voltage ; MATERIALS SCIENCE ; Metal oxides ; multidisciplinary ; Rechargeable batteries ; Rocks ; Safety ; Salt ; Salts ; Science ; Science (multidisciplinary) ; Voltage</subject><ispartof>Nature (London), 2020-09, Vol.585 (7823), p.63-67</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Sep 3, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63</citedby><cites>FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63</cites><orcidid>0000-0002-6093-429X ; 0000-0002-6226-6205 ; 0000-0002-6521-868X ; 0000-0001-5726-2587 ; 0000-0001-8533-0882 ; 0000-0002-1501-5550 ; 0000-0001-9206-3719 ; 0000-0003-1775-7651 ; 0000-0002-3798-642X ; 0000-0002-1488-1668 ; 0000-0003-0858-8577 ; 0000-0002-0272-9079 ; 0000000317757651 ; 0000000157262587 ; 0000000262266205 ; 0000000215015550 ; 0000000192063719 ; 0000000214881668 ; 000000026521868X ; 0000000308588577 ; 000000023798642X ; 0000000185330882 ; 0000000202729079 ; 0000000160951754 ; 000000026093429X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32879503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haodong</creatorcontrib><creatorcontrib>Zhu, Zhuoying</creatorcontrib><creatorcontrib>Yan, Qizhang</creatorcontrib><creatorcontrib>Yu, Sicen</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Li, Matthew</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Li, Yejing</creatorcontrib><creatorcontrib>Xing, Xing</creatorcontrib><creatorcontrib>Choi, Yoonjung</creatorcontrib><creatorcontrib>Gao, Lucy</creatorcontrib><creatorcontrib>Cho, Helen Sung-yun</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Wu, Tianpin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Xin, Huolin L.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><title>A disordered rock salt anode for fast-charging lithium-ion batteries</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications
1
–
3
. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt
4
,
5
Li
3+
x
V
2
O
5
can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li
+
reference electrode. The increased potential compared to graphite
6
,
7
reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li
3
V
2
O
5
anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li
3
VO
4
and LiV
0.5
Ti
0.5
S
2
)
8
,
9
. Further, disordered rock salt Li
3
V
2
O
5
can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li
3
V
2
O
5
to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
A vanadium-based lithium-rich disordered rock salt oxide is shown to work as a low-potential anode with rapid intercalation kinetics for lithium-ion batteries.</description><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>639/638/675</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Charging</subject><subject>Decay rate</subject><subject>Dendritic structure</subject><subject>Discharge</subject><subject>Electrodes</subject><subject>Energy</subject><subject>ENERGY STORAGE</subject><subject>Flux density</subject><subject>Fourier transforms</subject><subject>Halites</subject><subject>Humanities and Social Sciences</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion battery</subject><subject>Low voltage</subject><subject>MATERIALS SCIENCE</subject><subject>Metal oxides</subject><subject>multidisciplinary</subject><subject>Rechargeable batteries</subject><subject>Rocks</subject><subject>Safety</subject><subject>Salt</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Voltage</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kTtPxDAQhC0EguPgB9CgCBoag19x7BLxlpBorrccZ3NnyMVgOwX_npxygIREtcV-M6PdQeiEkktKuLpKgpZKYsIIZpJXWO6gGRWVxEKqahfNCGEKE8XlATpM6ZUQUtJK7KMDzlSlS8Jn6Pa6aHwKsYEITRGDeyuS7XJh-9BA0YZYtDZl7FY2Ln2_LDqfV35YYx_6orY5Q_SQjtBea7sEx9s5R4v7u8XNI35-eXi6uX7GTlQ6Y02qxiplRaOgVrVlivDSacY5lRyso8BqSktRWiUsBa6ZBi6dk3VTuVbyOTqbbEPK3iTnM7iVC30PLhsqSy01GaGLCXqP4WOAlM3aJwddZ3sIQzJMcK0VVYyO6Pkf9DUMsR8vGClBhJZUblLpRLkYUorQmvfo1zZ-GkrMpgYz1WDGGsymBrPRnG6dh3oNzY_i--8jwCYgjat-CfE3-n_XL--1kKU</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Liu, Haodong</creator><creator>Zhu, Zhuoying</creator><creator>Yan, Qizhang</creator><creator>Yu, Sicen</creator><creator>He, Xin</creator><creator>Chen, Yan</creator><creator>Zhang, Rui</creator><creator>Ma, Lu</creator><creator>Liu, Tongchao</creator><creator>Li, Matthew</creator><creator>Lin, Ruoqian</creator><creator>Chen, Yiming</creator><creator>Li, Yejing</creator><creator>Xing, Xing</creator><creator>Choi, Yoonjung</creator><creator>Gao, Lucy</creator><creator>Cho, Helen Sung-yun</creator><creator>An, Ke</creator><creator>Feng, Jun</creator><creator>Kostecki, Robert</creator><creator>Amine, Khalil</creator><creator>Wu, Tianpin</creator><creator>Lu, Jun</creator><creator>Xin, Huolin L.</creator><creator>Ong, Shyue Ping</creator><creator>Liu, Ping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6093-429X</orcidid><orcidid>https://orcid.org/0000-0002-6226-6205</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000-0001-8533-0882</orcidid><orcidid>https://orcid.org/0000-0002-1501-5550</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0003-1775-7651</orcidid><orcidid>https://orcid.org/0000-0002-3798-642X</orcidid><orcidid>https://orcid.org/0000-0002-1488-1668</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0002-0272-9079</orcidid><orcidid>https://orcid.org/0000000317757651</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000262266205</orcidid><orcidid>https://orcid.org/0000000215015550</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000214881668</orcidid><orcidid>https://orcid.org/000000026521868X</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><orcidid>https://orcid.org/000000023798642X</orcidid><orcidid>https://orcid.org/0000000185330882</orcidid><orcidid>https://orcid.org/0000000202729079</orcidid><orcidid>https://orcid.org/0000000160951754</orcidid><orcidid>https://orcid.org/000000026093429X</orcidid></search><sort><creationdate>20200903</creationdate><title>A disordered rock salt anode for fast-charging lithium-ion batteries</title><author>Liu, Haodong ; Zhu, Zhuoying ; Yan, Qizhang ; Yu, Sicen ; He, Xin ; Chen, Yan ; Zhang, Rui ; Ma, Lu ; Liu, Tongchao ; Li, Matthew ; Lin, Ruoqian ; Chen, Yiming ; Li, Yejing ; Xing, Xing ; Choi, Yoonjung ; Gao, Lucy ; Cho, Helen Sung-yun ; An, Ke ; Feng, Jun ; Kostecki, Robert ; Amine, Khalil ; Wu, Tianpin ; Lu, Jun ; Xin, Huolin L. ; Ong, Shyue Ping ; Liu, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>639/638/675</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Charging</topic><topic>Decay rate</topic><topic>Dendritic structure</topic><topic>Discharge</topic><topic>Electrodes</topic><topic>Energy</topic><topic>ENERGY STORAGE</topic><topic>Flux density</topic><topic>Fourier transforms</topic><topic>Halites</topic><topic>Humanities and Social Sciences</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion battery</topic><topic>Low voltage</topic><topic>MATERIALS SCIENCE</topic><topic>Metal oxides</topic><topic>multidisciplinary</topic><topic>Rechargeable batteries</topic><topic>Rocks</topic><topic>Safety</topic><topic>Salt</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haodong</creatorcontrib><creatorcontrib>Zhu, Zhuoying</creatorcontrib><creatorcontrib>Yan, Qizhang</creatorcontrib><creatorcontrib>Yu, Sicen</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Li, Matthew</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Li, Yejing</creatorcontrib><creatorcontrib>Xing, Xing</creatorcontrib><creatorcontrib>Choi, Yoonjung</creatorcontrib><creatorcontrib>Gao, Lucy</creatorcontrib><creatorcontrib>Cho, Helen Sung-yun</creatorcontrib><creatorcontrib>An, Ke</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Wu, Tianpin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Xin, Huolin L.</creatorcontrib><creatorcontrib>Ong, Shyue Ping</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haodong</au><au>Zhu, Zhuoying</au><au>Yan, Qizhang</au><au>Yu, Sicen</au><au>He, Xin</au><au>Chen, Yan</au><au>Zhang, Rui</au><au>Ma, Lu</au><au>Liu, Tongchao</au><au>Li, Matthew</au><au>Lin, Ruoqian</au><au>Chen, Yiming</au><au>Li, Yejing</au><au>Xing, Xing</au><au>Choi, Yoonjung</au><au>Gao, Lucy</au><au>Cho, Helen Sung-yun</au><au>An, Ke</au><au>Feng, Jun</au><au>Kostecki, Robert</au><au>Amine, Khalil</au><au>Wu, Tianpin</au><au>Lu, Jun</au><au>Xin, Huolin L.</au><au>Ong, Shyue Ping</au><au>Liu, Ping</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A disordered rock salt anode for fast-charging lithium-ion batteries</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>585</volume><issue>7823</issue><spage>63</spage><epage>67</epage><pages>63-67</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications
1
–
3
. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt
4
,
5
Li
3+
x
V
2
O
5
can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li
+
reference electrode. The increased potential compared to graphite
6
,
7
reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li
3
V
2
O
5
anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li
3
VO
4
and LiV
0.5
Ti
0.5
S
2
)
8
,
9
. Further, disordered rock salt Li
3
V
2
O
5
can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li
3
V
2
O
5
to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
A vanadium-based lithium-rich disordered rock salt oxide is shown to work as a low-potential anode with rapid intercalation kinetics for lithium-ion batteries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32879503</pmid><doi>10.1038/s41586-020-2637-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6093-429X</orcidid><orcidid>https://orcid.org/0000-0002-6226-6205</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid><orcidid>https://orcid.org/0000-0001-5726-2587</orcidid><orcidid>https://orcid.org/0000-0001-8533-0882</orcidid><orcidid>https://orcid.org/0000-0002-1501-5550</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0003-1775-7651</orcidid><orcidid>https://orcid.org/0000-0002-3798-642X</orcidid><orcidid>https://orcid.org/0000-0002-1488-1668</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0002-0272-9079</orcidid><orcidid>https://orcid.org/0000000317757651</orcidid><orcidid>https://orcid.org/0000000157262587</orcidid><orcidid>https://orcid.org/0000000262266205</orcidid><orcidid>https://orcid.org/0000000215015550</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/0000000214881668</orcidid><orcidid>https://orcid.org/000000026521868X</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><orcidid>https://orcid.org/000000023798642X</orcidid><orcidid>https://orcid.org/0000000185330882</orcidid><orcidid>https://orcid.org/0000000202729079</orcidid><orcidid>https://orcid.org/0000000160951754</orcidid><orcidid>https://orcid.org/000000026093429X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-09, Vol.585 (7823), p.63-67 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1659690 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | 639/301/299/891 639/4077/4079/891 639/638/675 Anodes Batteries Charging Decay rate Dendritic structure Discharge Electrodes Energy ENERGY STORAGE Flux density Fourier transforms Halites Humanities and Social Sciences Intercalation Lithium Lithium-ion batteries lithium-ion battery Low voltage MATERIALS SCIENCE Metal oxides multidisciplinary Rechargeable batteries Rocks Safety Salt Salts Science Science (multidisciplinary) Voltage |
title | A disordered rock salt anode for fast-charging lithium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20disordered%20rock%20salt%20anode%20for%20fast-charging%20lithium-ion%20batteries&rft.jtitle=Nature%20(London)&rft.au=Liu,%20Haodong&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-09-03&rft.volume=585&rft.issue=7823&rft.spage=63&rft.epage=67&rft.pages=63-67&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2637-6&rft_dat=%3Cproquest_osti_%3E2440496166%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-907da88a4d8eb8ba28035c9233163eac1e2b11545a84a1e3929e36cc6bd7cf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440496166&rft_id=info:pmid/32879503&rfr_iscdi=true |