Loading…
Accelerated aging test of new plastic scintillators
Fogging in plastic scintillators is a degradation mechanism that reduces light collection efficiency. In an effort to reduce maintenance costs, multiple groups have attempted to understand and prevent this problem by changing plastic compositions and system level designs. New formulations have been...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-10, Vol.949 (na) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fogging in plastic scintillators is a degradation mechanism that reduces light collection efficiency. In an effort to reduce maintenance costs, multiple groups have attempted to understand and prevent this problem by changing plastic compositions and system level designs. New formulations have been produced that are promising with respect to fogging resistance. In this paper, we study a variety of new compositions by subjecting them to an accelerated aging experiment with varying temperature and humidity profiles. Compositions are analyzed for their resistance to degradation after saturation periods, with those containing polymethyl methacrylate and divinyl benzene being the most promising. Pulse height spectra revealed that after environmental aging, many of the samples suffered a reduction in light yield to different degrees, a result that could be due to heating of the samples and may be prevented by further production optimization. |
---|---|
ISSN: | 0168-9002 1872-9576 |