Loading…

A Solubility Comparison of Cyclotetramethylenetetranitramine (HMX) and Potential Mock-HMX Candidates in Solvents Relevant to Slurry Formulating Polymer-Bonded Materials

Understanding solubility behavior of organic crystalline materials is critical in the development of slurry-formulated plastic bonded composites. In the field of high explosives (HE), a common method for obtaining high density, greater than 95% theoretical maximum density, is to encapsulate HE in a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solution chemistry 2020-08, Vol.49 (7-8), p.875-884
Main Authors: Bowden, Patrick R., Shorty, Marvin, Yeager, John D., Duque, Amanda L., Freye, Chris E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding solubility behavior of organic crystalline materials is critical in the development of slurry-formulated plastic bonded composites. In the field of high explosives (HE), a common method for obtaining high density, greater than 95% theoretical maximum density, is to encapsulate HE in a polymer matrix resulting in the formation of plastic bonded explosive (PBX) prills which can then be pressed to high density parts. Prill formation is highly nuanced and requires understanding of particle size distributions, solvent, antisolvent, and binder system as well as interactions thereof. In an effort to create mock-HE that mimics HE in density and mechanical strength, solubility of candidate molecules was compared to cyclotetramethylenetetranitramine (HMX) in binder solvents relevant to prill formation. The results indicate that the mock candidates chosen for this study have different solubilities compared to HMX in water and both organic solvents, 2-butanone and ethyl acetate, investigated. With these solubility differences known, prills to match PBXs based on HMX can be formulated, pressed and tested.
ISSN:0095-9782
1572-8927
DOI:10.1007/s10953-020-00980-6