Loading…
Frictional interactions at high velocity ductile metal interfaces
We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain size...
Saved in:
Published in: | Journal of physics. Conference series 2014-01, Vol.500 (17), p.172003-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43 |
container_end_page | 5 |
container_issue | 17 |
container_start_page | 172003 |
container_title | Journal of physics. Conference series |
container_volume | 500 |
creator | Hammerberg, J E Milhans, J L Ravelo, R J Germann, T C |
description | We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain sizes of 13 and 20 nm. Sample sizes consisted of 3×3×3 and 5×5×5 grains on each side of a sliding interface. We have considered sliding velocities from 20 to 4000 m/s. For velocities below a size dependent critical velocity above which a fluid layer forms, we find enhanced grain coarsening leading to a highly strained, graded final steady state microstructure that exhibits a dynamic morphology for times greater than 5-10 ns. We find that the frictional force is insensitive to the initial grain size distribution due to the evolution of the initial distribution to a new nonequilibrium steady state. We discuss the relationship of these results to single crystal interfaces and the mechanisms for grain size and shape evolution. |
doi_str_mv | 10.1088/1742-6596/500/17/172003 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1764193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576629717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD9-g4tevKzNx26yOZZiVSh40XNI04lN2W5qkhX67826KmIYknmZhyE8CF0RfEdw00yJqGjJa8mnNcY55aIYsyM0-Z0c_-lP0VmM2wzkIyZotgjOJOc73RauSxD0V4qFTsXGvW2KD2i9celQrPs8aaHYQfphrTYQL9CJ1W2Ey-_3HL0u7l_mj-Xy-eFpPluWhskqlRS05NJIhinDvKGytqahdgUVq3hFKF6Rmq0xB02FpQwksdrmi2qDG5Opc3Q97vUxORXzn8BsjO86MEkRkXdIlqHbEdoH_95DTGrnooG21R34Pg4cJaRinGT05h-69X3IHqKiteCcSkFEpsRImeBjDGDVPridDgdFsBr8q8GsGsyq7D8nNfpnn2Kvdu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576629717</pqid></control><display><type>article</type><title>Frictional interactions at high velocity ductile metal interfaces</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Hammerberg, J E ; Milhans, J L ; Ravelo, R J ; Germann, T C</creator><creatorcontrib>Hammerberg, J E ; Milhans, J L ; Ravelo, R J ; Germann, T C ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain sizes of 13 and 20 nm. Sample sizes consisted of 3×3×3 and 5×5×5 grains on each side of a sliding interface. We have considered sliding velocities from 20 to 4000 m/s. For velocities below a size dependent critical velocity above which a fluid layer forms, we find enhanced grain coarsening leading to a highly strained, graded final steady state microstructure that exhibits a dynamic morphology for times greater than 5-10 ns. We find that the frictional force is insensitive to the initial grain size distribution due to the evolution of the initial distribution to a new nonequilibrium steady state. We discuss the relationship of these results to single crystal interfaces and the mechanisms for grain size and shape evolution.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/500/17/172003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Coarsening ; Critical velocity ; ductile metals ; Evolution ; friction ; frictional force ; Grain size ; Grain size distribution ; Grains ; high velocity ; MATERIALS SCIENCE ; Molecular dynamics ; Morphology ; Particle size distribution ; Physics ; Single crystals ; Sliding ; Steady state</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.500 (17), p.172003-5</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43</citedby><cites>FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43</cites><orcidid>0000000344323146 ; 0000000173556075 ; 000000026813238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2576629717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1764193$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammerberg, J E</creatorcontrib><creatorcontrib>Milhans, J L</creatorcontrib><creatorcontrib>Ravelo, R J</creatorcontrib><creatorcontrib>Germann, T C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Frictional interactions at high velocity ductile metal interfaces</title><title>Journal of physics. Conference series</title><description>We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain sizes of 13 and 20 nm. Sample sizes consisted of 3×3×3 and 5×5×5 grains on each side of a sliding interface. We have considered sliding velocities from 20 to 4000 m/s. For velocities below a size dependent critical velocity above which a fluid layer forms, we find enhanced grain coarsening leading to a highly strained, graded final steady state microstructure that exhibits a dynamic morphology for times greater than 5-10 ns. We find that the frictional force is insensitive to the initial grain size distribution due to the evolution of the initial distribution to a new nonequilibrium steady state. We discuss the relationship of these results to single crystal interfaces and the mechanisms for grain size and shape evolution.</description><subject>Aluminum</subject><subject>Coarsening</subject><subject>Critical velocity</subject><subject>ductile metals</subject><subject>Evolution</subject><subject>friction</subject><subject>frictional force</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Grains</subject><subject>high velocity</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Particle size distribution</subject><subject>Physics</subject><subject>Single crystals</subject><subject>Sliding</subject><subject>Steady state</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkE1LAzEQhoMoWD9-g4tevKzNx26yOZZiVSh40XNI04lN2W5qkhX67826KmIYknmZhyE8CF0RfEdw00yJqGjJa8mnNcY55aIYsyM0-Z0c_-lP0VmM2wzkIyZotgjOJOc73RauSxD0V4qFTsXGvW2KD2i9celQrPs8aaHYQfphrTYQL9CJ1W2Ey-_3HL0u7l_mj-Xy-eFpPluWhskqlRS05NJIhinDvKGytqahdgUVq3hFKF6Rmq0xB02FpQwksdrmi2qDG5Opc3Q97vUxORXzn8BsjO86MEkRkXdIlqHbEdoH_95DTGrnooG21R34Pg4cJaRinGT05h-69X3IHqKiteCcSkFEpsRImeBjDGDVPridDgdFsBr8q8GsGsyq7D8nNfpnn2Kvdu0</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hammerberg, J E</creator><creator>Milhans, J L</creator><creator>Ravelo, R J</creator><creator>Germann, T C</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000344323146</orcidid><orcidid>https://orcid.org/0000000173556075</orcidid><orcidid>https://orcid.org/000000026813238X</orcidid></search><sort><creationdate>20140101</creationdate><title>Frictional interactions at high velocity ductile metal interfaces</title><author>Hammerberg, J E ; Milhans, J L ; Ravelo, R J ; Germann, T C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum</topic><topic>Coarsening</topic><topic>Critical velocity</topic><topic>ductile metals</topic><topic>Evolution</topic><topic>friction</topic><topic>frictional force</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Grains</topic><topic>high velocity</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Particle size distribution</topic><topic>Physics</topic><topic>Single crystals</topic><topic>Sliding</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammerberg, J E</creatorcontrib><creatorcontrib>Milhans, J L</creatorcontrib><creatorcontrib>Ravelo, R J</creatorcontrib><creatorcontrib>Germann, T C</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammerberg, J E</au><au>Milhans, J L</au><au>Ravelo, R J</au><au>Germann, T C</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictional interactions at high velocity ductile metal interfaces</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>500</volume><issue>17</issue><spage>172003</spage><epage>5</epage><pages>172003-5</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain sizes of 13 and 20 nm. Sample sizes consisted of 3×3×3 and 5×5×5 grains on each side of a sliding interface. We have considered sliding velocities from 20 to 4000 m/s. For velocities below a size dependent critical velocity above which a fluid layer forms, we find enhanced grain coarsening leading to a highly strained, graded final steady state microstructure that exhibits a dynamic morphology for times greater than 5-10 ns. We find that the frictional force is insensitive to the initial grain size distribution due to the evolution of the initial distribution to a new nonequilibrium steady state. We discuss the relationship of these results to single crystal interfaces and the mechanisms for grain size and shape evolution.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/500/17/172003</doi><tpages>5</tpages><orcidid>https://orcid.org/0000000344323146</orcidid><orcidid>https://orcid.org/0000000173556075</orcidid><orcidid>https://orcid.org/000000026813238X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2014-01, Vol.500 (17), p.172003-5 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_osti_scitechconnect_1764193 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Aluminum Coarsening Critical velocity ductile metals Evolution friction frictional force Grain size Grain size distribution Grains high velocity MATERIALS SCIENCE Molecular dynamics Morphology Particle size distribution Physics Single crystals Sliding Steady state |
title | Frictional interactions at high velocity ductile metal interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictional%20interactions%20at%20high%20velocity%20ductile%20metal%20interfaces&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Hammerberg,%20J%20E&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2014-01-01&rft.volume=500&rft.issue=17&rft.spage=172003&rft.epage=5&rft.pages=172003-5&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/500/17/172003&rft_dat=%3Cproquest_osti_%3E2576629717%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-2ea969c93023068295fc82fbe43464120b153d06ea27f23e91faf91f2ac08ce43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576629717&rft_id=info:pmid/&rfr_iscdi=true |