Loading…

The integrated miniaturized electrostatic analyzer: A space plasma environment sensor

The integrated Miniaturized Electrostatic Analyzer (iMESA) was a satellite-based ionospheric sensor that operated on NASA’s Space Test Program Satellite (STPSat-3) from December 2013 to July 2019. The instrument’s scientific objective was to (1) measure the plasma density in low Earth orbit, (2) mea...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2020-12, Vol.91 (12), p.123302-123302
Main Authors: Wilson, G. R., Maldonado, C. A., Enloe, C. L., Balthazor, R. D., Neal, P. C., McHarg, M. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integrated Miniaturized Electrostatic Analyzer (iMESA) was a satellite-based ionospheric sensor that operated on NASA’s Space Test Program Satellite (STPSat-3) from December 2013 to July 2019. The instrument’s scientific objective was to (1) measure the plasma density in low Earth orbit, (2) measure the plasma temperature in low Earth orbit, and (3) quantify the spacecraft potential with respect to the ambient plasma potential in the ionosphere. iMESA sampled the ionosphere every 10 s by measuring the ion current density through the ESA as a result of the motion of the spacecraft through the plasma. Current density spectra were transmitted to the ground where they were post-processed into ion density spectra and then analyzed numerically to determine the ion density, ion temperature, and spacecraft potential. This article discusses the instrument design and simulation, the determination of a geometric factor, and data processing procedures and evaluates the final data product with regard to the mission success criteria. The ion density and ion temperature captured by the iMESA instrument are on the same order and range as the values predicted in the literature. The spacecraft potential was also quantified. The conclusion after the evaluation of the instrument’s data product is that the scientific mission is successful on all three points.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0019354