Loading…

Influence of Silane Coupling Agents on Filler Network Structure and Stress-Induced Particle Rearrangement in Elastomer Nanocomposites

Filled rubber materials are key in many technologies having a broad impact on the economy and sustainability, the most obvious being tire technology. Adding filler dramatically improves the strength of rubber by reinforcement and tailoring the type of filler, and the chemistry of the interface betwe...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-10, Vol.12 (42), p.47891-47901
Main Authors: Presto, Dillon, Meyerhofer, John, Kippenbrock, Grant, Narayanan, Suresh, Ilavsky, Jan, Moctezuma, Sergio, Sutton, Mark, Foster, Mark D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Filled rubber materials are key in many technologies having a broad impact on the economy and sustainability, the most obvious being tire technology. Adding filler dramatically improves the strength of rubber by reinforcement and tailoring the type of filler, and the chemistry of the interface between the filler and rubber matrix is important for optimizing performance metrics such as fuel efficiency. In a highly loaded, silica-filled, cross-linked model rubber closely mimicking commercial materials, both the filler network structure and the dynamics of the silica filler particles change when the silica surface is modified with silane coupling agents. Reduction in size scales characteristic of the structure is quantified using ultra-small-angle X-ray scattering (USAXS) measurements and the particle dynamics probed with X-ray photon correlation spectroscopy (XPCS). While the structure averaged over the scattering volume changes little with aging after step strain, the dynamics slow appreciably in a manner that varies with the treatment of the silica filler. The evolution of filler particle dynamics depends on the chemical functionality at the silica surface, and observing these differences suggests a way of thinking about the origins of hysteresis in nanoparticle-reinforced rubbers. These microscopic filler dynamics are correlated with the macroscopic stress relaxation of the filled materials. The combination of static and dynamic X-ray scattering techniques with rheological measurements is a powerful approach for elucidating the microscopic mechanisms of rubber reinforcement.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c12106