Loading…
Scalable balanced training of conditional generative adversarial neural networks on image data
We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel tr...
Saved in:
Published in: | The Journal of supercomputing 2021-11, Vol.77 (11), p.13358-13384 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a distributed approach to train deep convolutional generative adversarial neural network (DC-CGANs) models. Our method reduces the imbalance between generator and discriminator by partitioning the training data according to data labels, and enhances scalability by performing a parallel training where multiple generators are concurrently trained, each one of them focusing on a single data label. Performance is assessed in terms of inception score, Fréchet inception distance, and image quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a significant improvement in comparison to state-of-the-art techniques to training DC-CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-021-03808-2 |