Loading…
Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes
In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both a...
Saved in:
Published in: | Physical review fluids 2021-04, Vol.6 (4), Article 044309 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid. |
---|---|
ISSN: | 2469-990X 2469-990X |
DOI: | 10.1103/PhysRevFluids.6.044309 |