Loading…
Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes
In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both a...
Saved in:
Published in: | Physical review fluids 2021-04, Vol.6 (4), Article 044309 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Physical review fluids |
container_volume | 6 |
creator | Ladiges, D. R. Nonaka, A. Klymko, K. Moore, G. C. Bell, J. B. Carney, S. P. Garcia, A. L. Natesh, S. R. Donev, A. |
description | In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid. |
doi_str_mv | 10.1103/PhysRevFluids.6.044309 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevFluids_6_044309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMoOOZeQYL3nUnTJsulTOeEgSIKuwvp6ekaaZuRZIO9vZV5oVfncPj5-c5HyC1nc86ZuH9rT_Edj6vu4Oo4l3NWFILpCzLJC6kzrdn28s9-TWYxfjHGuBRK6cWEbB9dhIAJqfMDjclDa2NyQMEPyQ2HQ0_9EUNt-z3WNPruiEOittv54FLb08YH2vsaOzfsKHYIKfjulDDekKvGdhFnv3NKPldPH8t1tnl9flk-bDIQC5GySuRCc82gqSoGSpS64pLpAliubYNKWdkUFrBUZa5EhcBLiYXC8ZaPD1RiSu7OvX7ENhFcQmhH-GFEMVwtylzyMSTPIQg-xoCN2QfX23AynJkfj-afRyPN2aP4BtPvbLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A.</creator><creatorcontrib>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.6.044309</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review fluids, 2021-04, Vol.6 (4), Article 044309</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</citedby><cites>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</cites><orcidid>0000-0001-9644-3727 ; 0000-0003-3477-5982 ; 0000-0003-0877-891X ; 0000-0003-4655-7544 ; 0000-0002-5749-334X ; 0000-0002-4158-5776 ; 0000000334775982 ; 000000025749334X ; 0000000241585776 ; 0000000196443727 ; 000000030877891X ; 0000000346557544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785261$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ladiges, D. R.</creatorcontrib><creatorcontrib>Nonaka, A.</creatorcontrib><creatorcontrib>Klymko, K.</creatorcontrib><creatorcontrib>Moore, G. C.</creatorcontrib><creatorcontrib>Bell, J. B.</creatorcontrib><creatorcontrib>Carney, S. P.</creatorcontrib><creatorcontrib>Garcia, A. L.</creatorcontrib><creatorcontrib>Natesh, S. R.</creatorcontrib><creatorcontrib>Donev, A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><title>Physical review fluids</title><description>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</description><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkNFKwzAUhoMoOOZeQYL3nUnTJsulTOeEgSIKuwvp6ekaaZuRZIO9vZV5oVfncPj5-c5HyC1nc86ZuH9rT_Edj6vu4Oo4l3NWFILpCzLJC6kzrdn28s9-TWYxfjHGuBRK6cWEbB9dhIAJqfMDjclDa2NyQMEPyQ2HQ0_9EUNt-z3WNPruiEOittv54FLb08YH2vsaOzfsKHYIKfjulDDekKvGdhFnv3NKPldPH8t1tnl9flk-bDIQC5GySuRCc82gqSoGSpS64pLpAliubYNKWdkUFrBUZa5EhcBLiYXC8ZaPD1RiSu7OvX7ENhFcQmhH-GFEMVwtylzyMSTPIQg-xoCN2QfX23AynJkfj-afRyPN2aP4BtPvbLo</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Ladiges, D. R.</creator><creator>Nonaka, A.</creator><creator>Klymko, K.</creator><creator>Moore, G. C.</creator><creator>Bell, J. B.</creator><creator>Carney, S. P.</creator><creator>Garcia, A. L.</creator><creator>Natesh, S. R.</creator><creator>Donev, A.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9644-3727</orcidid><orcidid>https://orcid.org/0000-0003-3477-5982</orcidid><orcidid>https://orcid.org/0000-0003-0877-891X</orcidid><orcidid>https://orcid.org/0000-0003-4655-7544</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-4158-5776</orcidid><orcidid>https://orcid.org/0000000334775982</orcidid><orcidid>https://orcid.org/000000025749334X</orcidid><orcidid>https://orcid.org/0000000241585776</orcidid><orcidid>https://orcid.org/0000000196443727</orcidid><orcidid>https://orcid.org/000000030877891X</orcidid><orcidid>https://orcid.org/0000000346557544</orcidid></search><sort><creationdate>20210422</creationdate><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><author>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladiges, D. R.</creatorcontrib><creatorcontrib>Nonaka, A.</creatorcontrib><creatorcontrib>Klymko, K.</creatorcontrib><creatorcontrib>Moore, G. C.</creatorcontrib><creatorcontrib>Bell, J. B.</creatorcontrib><creatorcontrib>Carney, S. P.</creatorcontrib><creatorcontrib>Garcia, A. L.</creatorcontrib><creatorcontrib>Natesh, S. R.</creatorcontrib><creatorcontrib>Donev, A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladiges, D. R.</au><au>Nonaka, A.</au><au>Klymko, K.</au><au>Moore, G. C.</au><au>Bell, J. B.</au><au>Carney, S. P.</au><au>Garcia, A. L.</au><au>Natesh, S. R.</au><au>Donev, A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</atitle><jtitle>Physical review fluids</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><artnum>044309</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevFluids.6.044309</doi><orcidid>https://orcid.org/0000-0001-9644-3727</orcidid><orcidid>https://orcid.org/0000-0003-3477-5982</orcidid><orcidid>https://orcid.org/0000-0003-0877-891X</orcidid><orcidid>https://orcid.org/0000-0003-4655-7544</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-4158-5776</orcidid><orcidid>https://orcid.org/0000000334775982</orcidid><orcidid>https://orcid.org/000000025749334X</orcidid><orcidid>https://orcid.org/0000000241585776</orcidid><orcidid>https://orcid.org/0000000196443727</orcidid><orcidid>https://orcid.org/000000030877891X</orcidid><orcidid>https://orcid.org/0000000346557544</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-990X |
ispartof | Physical review fluids, 2021-04, Vol.6 (4), Article 044309 |
issn | 2469-990X 2469-990X |
language | eng |
recordid | cdi_osti_scitechconnect_1785261 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
title | Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20ion%20stochastic%20continuum%20overdamped%20solvent%20algorithm%20for%20modeling%20electrolytes&rft.jtitle=Physical%20review%20fluids&rft.au=Ladiges,%20D.%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-04-22&rft.volume=6&rft.issue=4&rft.artnum=044309&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.6.044309&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevFluids_6_044309%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |