Loading…

Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes

In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review fluids 2021-04, Vol.6 (4), Article 044309
Main Authors: Ladiges, D. R., Nonaka, A., Klymko, K., Moore, G. C., Bell, J. B., Carney, S. P., Garcia, A. L., Natesh, S. R., Donev, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3
cites cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3
container_end_page
container_issue 4
container_start_page
container_title Physical review fluids
container_volume 6
creator Ladiges, D. R.
Nonaka, A.
Klymko, K.
Moore, G. C.
Bell, J. B.
Carney, S. P.
Garcia, A. L.
Natesh, S. R.
Donev, A.
description In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.
doi_str_mv 10.1103/PhysRevFluids.6.044309
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1785261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevFluids_6_044309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMoOOZeQYL3nUnTJsulTOeEgSIKuwvp6ekaaZuRZIO9vZV5oVfncPj5-c5HyC1nc86ZuH9rT_Edj6vu4Oo4l3NWFILpCzLJC6kzrdn28s9-TWYxfjHGuBRK6cWEbB9dhIAJqfMDjclDa2NyQMEPyQ2HQ0_9EUNt-z3WNPruiEOittv54FLb08YH2vsaOzfsKHYIKfjulDDekKvGdhFnv3NKPldPH8t1tnl9flk-bDIQC5GySuRCc82gqSoGSpS64pLpAliubYNKWdkUFrBUZa5EhcBLiYXC8ZaPD1RiSu7OvX7ENhFcQmhH-GFEMVwtylzyMSTPIQg-xoCN2QfX23AynJkfj-afRyPN2aP4BtPvbLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A.</creator><creatorcontrib>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.6.044309</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review fluids, 2021-04, Vol.6 (4), Article 044309</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</citedby><cites>FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</cites><orcidid>0000-0001-9644-3727 ; 0000-0003-3477-5982 ; 0000-0003-0877-891X ; 0000-0003-4655-7544 ; 0000-0002-5749-334X ; 0000-0002-4158-5776 ; 0000000334775982 ; 000000025749334X ; 0000000241585776 ; 0000000196443727 ; 000000030877891X ; 0000000346557544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785261$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ladiges, D. R.</creatorcontrib><creatorcontrib>Nonaka, A.</creatorcontrib><creatorcontrib>Klymko, K.</creatorcontrib><creatorcontrib>Moore, G. C.</creatorcontrib><creatorcontrib>Bell, J. B.</creatorcontrib><creatorcontrib>Carney, S. P.</creatorcontrib><creatorcontrib>Garcia, A. L.</creatorcontrib><creatorcontrib>Natesh, S. R.</creatorcontrib><creatorcontrib>Donev, A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><title>Physical review fluids</title><description>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</description><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkNFKwzAUhoMoOOZeQYL3nUnTJsulTOeEgSIKuwvp6ekaaZuRZIO9vZV5oVfncPj5-c5HyC1nc86ZuH9rT_Edj6vu4Oo4l3NWFILpCzLJC6kzrdn28s9-TWYxfjHGuBRK6cWEbB9dhIAJqfMDjclDa2NyQMEPyQ2HQ0_9EUNt-z3WNPruiEOittv54FLb08YH2vsaOzfsKHYIKfjulDDekKvGdhFnv3NKPldPH8t1tnl9flk-bDIQC5GySuRCc82gqSoGSpS64pLpAliubYNKWdkUFrBUZa5EhcBLiYXC8ZaPD1RiSu7OvX7ENhFcQmhH-GFEMVwtylzyMSTPIQg-xoCN2QfX23AynJkfj-afRyPN2aP4BtPvbLo</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Ladiges, D. R.</creator><creator>Nonaka, A.</creator><creator>Klymko, K.</creator><creator>Moore, G. C.</creator><creator>Bell, J. B.</creator><creator>Carney, S. P.</creator><creator>Garcia, A. L.</creator><creator>Natesh, S. R.</creator><creator>Donev, A.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9644-3727</orcidid><orcidid>https://orcid.org/0000-0003-3477-5982</orcidid><orcidid>https://orcid.org/0000-0003-0877-891X</orcidid><orcidid>https://orcid.org/0000-0003-4655-7544</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-4158-5776</orcidid><orcidid>https://orcid.org/0000000334775982</orcidid><orcidid>https://orcid.org/000000025749334X</orcidid><orcidid>https://orcid.org/0000000241585776</orcidid><orcidid>https://orcid.org/0000000196443727</orcidid><orcidid>https://orcid.org/000000030877891X</orcidid><orcidid>https://orcid.org/0000000346557544</orcidid></search><sort><creationdate>20210422</creationdate><title>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</title><author>Ladiges, D. R. ; Nonaka, A. ; Klymko, K. ; Moore, G. C. ; Bell, J. B. ; Carney, S. P. ; Garcia, A. L. ; Natesh, S. R. ; Donev, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladiges, D. R.</creatorcontrib><creatorcontrib>Nonaka, A.</creatorcontrib><creatorcontrib>Klymko, K.</creatorcontrib><creatorcontrib>Moore, G. C.</creatorcontrib><creatorcontrib>Bell, J. B.</creatorcontrib><creatorcontrib>Carney, S. P.</creatorcontrib><creatorcontrib>Garcia, A. L.</creatorcontrib><creatorcontrib>Natesh, S. R.</creatorcontrib><creatorcontrib>Donev, A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladiges, D. R.</au><au>Nonaka, A.</au><au>Klymko, K.</au><au>Moore, G. C.</au><au>Bell, J. B.</au><au>Carney, S. P.</au><au>Garcia, A. L.</au><au>Natesh, S. R.</au><au>Donev, A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes</atitle><jtitle>Physical review fluids</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><artnum>044309</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the fluctuating immersed-boundary approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both algorithms the immersed-boundary method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long-range electrostatic interactions are computed by solving the Poisson equation, with short-range corrections included using an immersed-boundary variant of the classical particle-particle particle-mesh technique. Also included is a short-range repulsive force based on the Weeks-Chandler-Andersen potential. This methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In each case, good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevFluids.6.044309</doi><orcidid>https://orcid.org/0000-0001-9644-3727</orcidid><orcidid>https://orcid.org/0000-0003-3477-5982</orcidid><orcidid>https://orcid.org/0000-0003-0877-891X</orcidid><orcidid>https://orcid.org/0000-0003-4655-7544</orcidid><orcidid>https://orcid.org/0000-0002-5749-334X</orcidid><orcidid>https://orcid.org/0000-0002-4158-5776</orcidid><orcidid>https://orcid.org/0000000334775982</orcidid><orcidid>https://orcid.org/000000025749334X</orcidid><orcidid>https://orcid.org/0000000241585776</orcidid><orcidid>https://orcid.org/0000000196443727</orcidid><orcidid>https://orcid.org/000000030877891X</orcidid><orcidid>https://orcid.org/0000000346557544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-990X
ispartof Physical review fluids, 2021-04, Vol.6 (4), Article 044309
issn 2469-990X
2469-990X
language eng
recordid cdi_osti_scitechconnect_1785261
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
title Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20ion%20stochastic%20continuum%20overdamped%20solvent%20algorithm%20for%20modeling%20electrolytes&rft.jtitle=Physical%20review%20fluids&rft.au=Ladiges,%20D.%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-04-22&rft.volume=6&rft.issue=4&rft.artnum=044309&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.6.044309&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevFluids_6_044309%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-b3239190cfbb0c7359b16094c029afe77a6f4ace575273bec156e47e4ac2798b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true