Loading…

A slip-spring framework to study relaxation dynamics of entangled wormlike micelles with kinetic Monte Carlo algorithm

[Display omitted] Wormlike micelles (WLMs) formed due to the self-assembly of amphiphiles in aqueous solution have similar viscoelastic properties as polymers. Owing to this similarity, in this work, it is postulated that kinetic Monte Carlo (kMC) sampling of slip-springs dynamics, which is able to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2021-10, Vol.600 (C), p.550-560
Main Authors: Pahari, Silabrata, Bhadriraju, Bhavana, Akbulut, Mustafa, Kwon, Joseph Sang-Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Wormlike micelles (WLMs) formed due to the self-assembly of amphiphiles in aqueous solution have similar viscoelastic properties as polymers. Owing to this similarity, in this work, it is postulated that kinetic Monte Carlo (kMC) sampling of slip-springs dynamics, which is able to model the rheology of polymers, can also be extended to capture the relaxation dynamics of WLMs. The proposed modeling framework considers the following relaxation mechanisms: reptation, union-scission, and constraint release. Specifically, each of these relaxation mechanisms is simulated as separate kMC events that capture the relaxation dynamics while considering the living nature of WLMs within the slip-spring framework. As a case study, the model is implemented to a system of sodium oleate and sodium chloride to predict the linear rheology and the characteristic relaxation times associated with the individual relaxation mechanisms at different pH and salt concentrations. Linear rheology predictions were found to be in good agreement with experimental data. Furthermore, the calculated relaxation times highlighted that reptation contributed to a continuous increase in viscosity while union-scission contributed to the decrease in viscosity of WLM solutions at a higher salinity and pH. This manifests the proposed model’s capability to provide insights into the key processes governing WLM’s rheology.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.05.032