Loading…

Thin hybrid capillary two-phase cooling system

A novel hybrid two-phase cooling system was developed that integrated a mechanically pumped two-phase loop with a capillary-driven two-phase cooling device. The latter cooling mechanism was based on evaporation/boiling from wick structures made by sintering copper particles on the interior surfaces...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer 2020-03, Vol.112, p.104490, Article 104490
Main Authors: Shaeri, Mohammad Reza, Bonner, Richard W., Ellis, Michael C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel hybrid two-phase cooling system was developed that integrated a mechanically pumped two-phase loop with a capillary-driven two-phase cooling device. The latter cooling mechanism was based on evaporation/boiling from wick structures made by sintering copper particles on the interior surfaces of a copper cold plate. The cold plate provided cooling to two surfaces and each of them included four heaters in series. The novelty of the developed technology was preventing flooding of the evaporator wicks by isolating the evaporation surface from the pumped liquid flow that fed them. This arrangement allowed for a high liquid feed flow rate much greater than would be allowed by a capillary pumped system while maintaining a low thermal resistance at the evaporation surface. Using this approach, the cooling system removed over 850 W with a low pumping power below 1.0 W while using R245fa as the working fluid. The equivalent heat fluxes exceeded 970 W/cm2 over areas less than 0.12 cm2. The measured thermal resistance was as low as 0.09 K-cm2/W. The presented thermal management solution enables an increase in the power of high heat flux electronic devices beyond the state-of-the-art.
ISSN:0735-1933
1879-0178
DOI:10.1016/j.icheatmasstransfer.2020.104490