Loading…
Universal Tripartite Entanglement in One-Dimensional Many-Body Systems
Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross section, we introduce two related non-negative measures of tripartite entanglement g and h. We prove structure theorems which show that states with nonzero g or h ha...
Saved in:
Published in: | Physical review letters 2021-03, Vol.126 (12), p.120501-120501, Article 120501 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross section, we introduce two related non-negative measures of tripartite entanglement g and h. We prove structure theorems which show that states with nonzero g or h have nontrivial tripartite entanglement. We then establish that in one dimension these tripartite entanglement measures are universal quantities that depend only on the emergent low-energy theory. For a gapped system, we argue that either g≠0 and h=0 or g=h=0, depending on whether the ground state has long-range order. For a critical system, we develop a numerical algorithm for computing g and h from a lattice model. We compute g and h for various CFTs and show that h depends only on the central charge whereas g depends on the whole operator content. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.120501 |