Loading…
Strong Potential Gradients and Electron Confinement in ZnO Nanoparticle Films: Implications for Charge-Carrier Transport and Photocatalysis
Zinc oxide (ZnO) nanomaterials are promising components for chemical and biological sensors and photocatalytic conversion and operate as electron collectors in photovoltaic technologies. Many of these applications involve nanostructures in contact with liquids or exposed to ambient atmosphere. Under...
Saved in:
Published in: | ACS applied nano materials 2021-11, Vol.4 (11), p.12213-12221 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc oxide (ZnO) nanomaterials are promising components for chemical and biological sensors and photocatalytic conversion and operate as electron collectors in photovoltaic technologies. Many of these applications involve nanostructures in contact with liquids or exposed to ambient atmosphere. Under these conditions, single-crystal ZnO surfaces are known to form narrow electron accumulation layers with few nanometer spatial penetration into the bulk. A key question is to what extent such pronounced surface potential gradients can develop in the nanophases of ZnO, where they would dominate the catalytic activity by modulating charge-carrier mobility and lifetimes. Here, we follow the temperature-dependent surface electronic structure of nanoporous ZnO with photoemission spectroscopy to reveal a sizable, spatially averaged downward band bending for the hydroxylated state and a conservative upper bound of |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.1c02730 |