Loading…
Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector
The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology, will cover the pseudo-rapidity region of 2.4 < |n| < 4.0 with two end caps on each side and a total area of 6.4 m2. The timing p...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-07, Vol.980 (C) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology, will cover the pseudo-rapidity region of 2.4 < |n| < 4.0 with two end caps on each side and a total area of 6.4 m2. The timing performance can be improved by implanting an internal gain layer that can produce signals with a fast rising edge. It significantly improves the signal-to-noise ratio. The required average timing resolution per track for a minimum ionizing particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1MeV neutron-equivalent fluence up to 2.5 1015 neq/cm2 including a safety factor of 1.5 before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-ups at the HL-LHC. The layout and performance of the various versions of LGAD prototypes produced by Hamamatsu (HPK) have been studied by the ATLAS Collaboration. The breakdown voltages, depletion voltages, inter-pad gaps, collected charge as well as the time resolution have been measured and the production yield of large size sensors has been evaluated. |
---|---|
ISSN: | 0168-9002 1872-9576 |