Loading…

Asymmetric Spin Transport in Colloidal Quantum Dot Junctions

The study of charge and spin transport through semiconductor quantum dots is experiencing a renaissance due to recent advances in nanofabrication and the realization of quantum dots as candidates for quantum computing. In this work, we combine atomistic electronic structure calculations with quantum...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2021-12, Vol.125 (48), p.26661-26669
Main Authors: Philbin, John P, Levy, Amikam, Narang, Prineha, Dou, Wenjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study of charge and spin transport through semiconductor quantum dots is experiencing a renaissance due to recent advances in nanofabrication and the realization of quantum dots as candidates for quantum computing. In this work, we combine atomistic electronic structure calculations with quantum master equation methods to study the transport of electrons and holes through strongly confined quantum dots coupled to two leads with a voltage bias. We find that a competition between the energy spacing between the two lowest quasi-particle energy levels and the strength of the exchange interaction determines the spin states of the lowest two quasi-particle energy levels. Specifically, the low density of electron states results in a spin singlet being the lowest-energy two-electron state, whereas, in contrast, the high density of states and significant exchange interaction result in a spin triplet being the lowest-energy two-hole state. The exchange interaction is also responsible for spin blockades in transport properties, which could persist up to temperatures as high as 77 K for strongly confined colloidal quantum dots from our calculations. Finally, we relate these findings to the preparation and manipulation of singlet and triplet spin qubit states in quantum dots using voltage biases.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.1c08998