Loading…

Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys

The accurate estimation of photometric redshifts plays a crucial role in accomplishing science objectives of the large survey projects. Template-fitting and machine learning are the two main types of methods applied currently. Based on the training set obtained by cross-correlating the DESI Legacy I...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2023-01, Vol.518 (1), p.513-525
Main Authors: Li, Changhua, Zhang, Yanxia, Cui, Chenzhou, Fan, Dongwei, Zhao, Yongheng, Wu, Xue-Bing, Zhang, Jing-Yi, Tao, Yihan, Han, Jun, Xu, Yunfei, Li, Shanshan, Mi, Linying, He, Boliang, Kang, Zihan, Wang, Youfen, Yang, Hanxi, Yang, Sisi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate estimation of photometric redshifts plays a crucial role in accomplishing science objectives of the large survey projects. Template-fitting and machine learning are the two main types of methods applied currently. Based on the training set obtained by cross-correlating the DESI Legacy Imaging Surveys DR9 galaxy catalogue and the SDSS DR16 galaxy catalogue, the two kinds of methods are used and optimized, such as eazy for template-fitting approach and catboost for machine learning. Then, the created models are tested by the cross-matched samples of the DESI Legacy Imaging Surveys DR9 galaxy catalogue with LAMOST DR7, GAMA DR3, and WiggleZ galaxy catalogues. Moreover, three machine learning methods (catboost, Multi-Layer Perceptron, and Random Forest) are compared; catboost shows its superiority for our case. By feature selection and optimization of model parameters, catboost can obtain higher accuracy with optical and infrared photometric information, the best performance ($\rm MSE=0.0032$, σNMAD = 0.0156, and $O=0.88{{\ \rm per\ cent}}$) with g ≤ 24.0, r ≤ 23.4, and z ≤ 22.5 is achieved. But eazy can provide more accurate photometric redshift estimation for high redshift galaxies, especially beyond the redshift range of training sample. Finally, we finish the redshift estimation of all DESI Legacy Imaging Surveys DR9 galaxies with catboost and eazy, which will contribute to the further study of galaxies and their properties.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stac3037