Loading…

Solution Structure and Hydration Forces between Mica and Hydrophilic Versus Hydrophobic Surfaces

Solid–liquid interfaces are central to a range of interesting phenomena including colloidal aggregation, crystallization by particle attachment, catalysis, heterogeneous nucleation, water desalination, and biomolecular assembly. While three-dimensional atomic force microscopy (3D AFM) has emerged as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2023-02, Vol.127 (5), p.2741-2752
Main Authors: Nakouzi, E., Kerisit, S., Legg, B. A., Yadav, S., Li, D., Stack, A. G., Mundy, C. J., Chun, J., Schenter, G. K., De Yoreo, J. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid–liquid interfaces are central to a range of interesting phenomena including colloidal aggregation, crystallization by particle attachment, catalysis, heterogeneous nucleation, water desalination, and biomolecular assembly. While three-dimensional atomic force microscopy (3D AFM) has emerged as a technique for resolving interfacial solution structure at the molecular scale, key challenges for data interpretation persist, most notably regarding the influence of the probe on the measured structure. Using the mica–water system as a case study, we investigate the effect of hydrophilic and hydrophobic probes on interfacial solution structure measured by 3D AFM. Data from hydrophilic silicon-based probes are in good agreement with molecular dynamics simulations, wherein the innermost water molecules adsorb preferentially at the surface ditrigonal cavity sites, followed by two additional ordered hydration layers. In contrast, the hydrophobic carbon-based probes detect vertical oscillatory features but do not show lateral patterning that matches the underlying mica lattice. At high ionic strength, up to six of these oscillatory features are observed extending 2 nm into the solution phase with an average spacing of 0.29 ± (0.04) nm. We also determine that the repulsive hydration force between mica and the hydrophilic probe depends on the nature and concentration of ions in solution. Specifically, solutions with stronger ion–water and ion–ion interactions produce a stronger repulsive hydration force as the probe approaches the surface. Based on these observations, we present a scheme for controlling the outcomes of particle aggregation and attachment by varying the solution conditions to tune the hydration force.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.2c09120