Loading…

Advances in Brillouin–Mandelstam light-scattering spectroscopy

Recent years have witnessed a much broader use of Brillouin inelastic light-scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures and devices. Driven by the developments in instrumentation and the strong need for accurate knowledge on the energies of...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2021-10, Vol.15 (10), p.720-731
Main Authors: Kargar, Fariborz, Balandin, Alexander A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent years have witnessed a much broader use of Brillouin inelastic light-scattering spectroscopy for the investigation of phonons and magnons in novel materials, nanostructures and devices. Driven by the developments in instrumentation and the strong need for accurate knowledge on the energies of elemental excitations, Brillouin–Mandelstam spectroscopy is rapidly becoming an essential technique that is complementary to Raman inelastic light-scattering spectroscopy. We provide an overview of recent progress in the Brillouin light-scattering technique, focusing on the use of this photonic method for the investigation of confined acoustic phonons, phononic metamaterials and magnon propagation and scattering. This Review emphasizes the emerging applications of Brillouin–Mandelstam spectroscopy for phonon-engineered structures and spintronic devices, and concludes with a perspective on future directions. Nearly 100 years after the prediction of Brillouin light-scattering spectroscopy, or Brillouin–Mandelstam light-scattering spectroscopy, the effect has proved itself a powerful tool for decades. Now its application to probing confined acoustic phonons, phononic metamaterials and magnons is reviewed.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-021-00836-5