Loading…
Design of the KSTAR Divertor
The planned Korea Superconducting Tokamak Advanced Research (KSTAR) divertor has been designed to provide reliable power handling and particle control with enough shaping flexibility to accommodate a wide range of plasma operation. The physics basis for the current configuration of the KSTAR diverto...
Saved in:
Published in: | Fusion technology 2000-03, Vol.37 (2), p.110-123 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The planned Korea Superconducting Tokamak Advanced Research (KSTAR) divertor has been designed to provide reliable power handling and particle control with enough shaping flexibility to accommodate a wide range of plasma operation. The physics basis for the current configuration of the KSTAR divertor through analyses of the heat flux at the target, particle control, and plasma-facing component is reported. A simple zero-dimensional model based on the power balance assumptions and two-dimensional codes is utilized to estimate the heat flux to the divertor plate. The limit for the peak heat flux on the divertor plate, 3.5 MW/m
2
, requires advanced operating modes such as the radiative divertor and radiative mantle, which are considered to overcome the weakness of a high-recycling divertor. A simple particle balance model could estimate the pumping rate with total leakage fraction assuming particle sources. A Monte Carlo neutral transport calculation determines the dimension of a gap between the center and outer divertor targets. It also determines the number and best position of the pumps, as well as the geometry for conductance. For the initial 20-s discharges, a bolted-tile carbon-fiber-composite design is relied upon for the upper and lower divertor targets. The design of the supporting structure for the divertors will allow for future modifications to accommodate thermal steady-state 300-s operation or to optimize divertor performance based on new understanding gained during initial tokamak operation. |
---|---|
ISSN: | 0748-1896 |
DOI: | 10.13182/FST00-A127 |