Loading…
Transformer spin-triplet superconductivity at the onset of isospin order in bilayer graphene
We consider the origin of superconductivity found recently in Bernal bilayer graphene at the onset of isospin-polarized order, trying to infer the pairing mechanism and superconducting order from the measurements available to date. The superconductivity is induced by a parallel magnetic field and pe...
Saved in:
Published in: | Physical review. B 2023-05, Vol.107 (17), Article 174512 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the origin of superconductivity found recently in Bernal bilayer graphene at the onset of isospin-polarized order, trying to infer the pairing mechanism and superconducting order from the measurements available to date. The superconductivity is induced by a parallel magnetic field and persists well above the Pauli limit, indicating an unconventional scenario of quantum-critical pairing, where soft fluctuations of isospin give rise to spin-triplet superconductivity. We consider the scenario in which the pairing interaction is entirely repulsive, which stands in contrast to the typical quantum-critical pairing mechanisms. Superconductivity emerges through a “transformer” mechanism where, in the presence of an in-plane magnetic field, the incipient valley polarization converts a frequency-independent repulsion into one with a strong nonmonotonic frequency dependence. Such an interaction enables a nonzero solution for the pairing gap function that changes sign as a function of frequency. Furthermore, the same mechanism holds at zero field in the presence of spin-orbit coupling, providing a likely explanation for the recently observed superconductivity in bilayer graphene on the WSe2 monolayer. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.107.174512 |