Loading…
Anomalous diffusion of inertial, weakly damped particles
The anomalous (i.e., non-Gaussian) dynamics of particles subject to a deterministic acceleration and a series of "random kicks" is studied. Based on an extension of the concept of continuous time random walks to position-velocity space, a new fractional equation of the Kramers-Fokker-Planc...
Saved in:
Published in: | Physical review letters 2006-06, Vol.96 (23), p.230601-230601, Article 230601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anomalous (i.e., non-Gaussian) dynamics of particles subject to a deterministic acceleration and a series of "random kicks" is studied. Based on an extension of the concept of continuous time random walks to position-velocity space, a new fractional equation of the Kramers-Fokker-Planck type is derived. The associated collision operator necessarily involves a fractional substantial derivative, representing important nonlocal couplings in time and space. For the force-free case, a closed solution is found and discussed. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.96.230601 |