Loading…
Phase stability of {epsilon} and {gamma} HNIW (CL-20) at high-pressure and temperature
Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements ({alpha}, {beta}, {gamma}, {epsilon}, {zeta}). As CL-20 is transitioned into munitions...
Saved in:
Published in: | AIP conference proceedings 2007-12, Vol.955 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements ({alpha}, {beta}, {gamma}, {epsilon}, {zeta}). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 deg. C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 deg. C then underwent a transition to the gamma phase above 125 deg. C and then thermal decomposition occurred above 150 deg. C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 deg. C. Pressure--volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 deg. C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.2832955 |