Loading…
Levoglucosan and Other Cellulose Markers in Pyrolysates of Miocene Lignites: Geochemical and Environmental Implications
Using the pyrolysis-gas chromatography–mass spectrometry and off-line pyrolysis/silylation methods for lignites from three Miocene brown coal basins of Poland resulted in the characterization of many organic compounds, including dominant cellulose degradation products such as levoglucosan, 1,6-anhyd...
Saved in:
Published in: | Environmental science & technology 2008-04, Vol.42 (8), p.2957-2963 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using the pyrolysis-gas chromatography–mass spectrometry and off-line pyrolysis/silylation methods for lignites from three Miocene brown coal basins of Poland resulted in the characterization of many organic compounds, including dominant cellulose degradation products such as levoglucosan, 1,6-anhydro-β-d-glucofuranose, and 1,4:3,6-dianhydroglucopyranose. Levoglucosan is a general source-specific tracer for wood smoke in the atmosphere and recent sediments. The presence of unusually high levels of this compound in brown coal pyrolysates suggests that a portion of this compound concentration in some airsheds may originate from lignite combustion. On the other hand, nonglucose anhydrosaccharides, in particular, mannosan and galactosan, typical of hemicellulose, are not detected in those lignite pyrolysates investigated. This indicates that mannosan and galactosan are better specific tracers for combustion of contemporary biomass in those regions were the utilization of brown coals containing fossilized cellulose is important. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es7021472 |