Loading…
Two-time scale subordination in physical processes with long-term memory
We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reacta...
Saved in:
Published in: | Annals of physics 2008-03, Vol.323 (3), p.643-653 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley–Torvik type of state equation. |
---|---|
ISSN: | 0003-4916 1096-035X |
DOI: | 10.1016/j.aop.2007.04.011 |