Loading…

Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature

A quantum sl (2,ℝ) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature t...

Full description

Saved in:
Bibliographic Details
Published in:Physics of atomic nuclei 2010-02, Vol.73 (2), p.255-263
Main Authors: Ballesteros, A., Enciso, A., Herranz, F. J., Ragnisco, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A quantum sl (2,ℝ) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature tensors for these “deformed“ spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z → 0 is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.
ISSN:1063-7788
1562-692X
DOI:10.1134/S1063778810020092