Loading…

Gyrokinetic Fokker-Planck collision operator

The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles,...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2011-05, Vol.106 (19), p.195002-195002
Main Authors: Li, B, Ernst, D R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 195002
container_issue 19
container_start_page 195002
container_title Physical review letters
container_volume 106
creator Li, B
Ernst, D R
description The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles, momentum, and energy, while ensuring non-negative entropy production. Finite gyroradius effects in both field-particle and test-particle terms are evaluated. When implemented in gyrokinetic simulations, these effects can be precomputed. The field-particle operator at each time step requires the evaluation of a single two-dimensional integral, and is not only more accurate, but appears to be less expensive to evaluate than conserving model operators.
doi_str_mv 10.1103/PhysRevLett.106.195002
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21538335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>871964620</sourcerecordid><originalsourceid>FETCH-LOGICAL-o168t-8db5d4a09ed87b848ef4677aebf5487658348cc40edc3280b082ea8ee907c07d3</originalsourceid><addsrcrecordid>eNo10EFLw0AQBeBFFFurf6EUPHgxdSa72Z0cpdgqFCyi55BspnRNmq3ZrdB_b6H19C4fj8cTYowwRQT5tNocwgf_LjnGKYKeYp4BpBdiiGDyxCCqSzEEkJjkAGYgbkL4BgBMNV2LQYpaE2ozFI-LQ-8b13F0djL3TcN9smrLzjYT69vWBee7id9xX0bf34qrddkGvjvnSHzNXz5nr8nyffE2e14mHjXFhOoqq1UJOddkKlLEa6WNKblaZ4qMzkgqslYB11amBBVQyiUx52AsmFqOxP2p14foimBdZLuxvuvYxiLFTJKU2VE9nNSu9z97DrHYumC5Pa5nvw8FGcy10ikc5fgs99WW62LXu23ZH4r_G-QfqGVg2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871964620</pqid></control><display><type>article</type><title>Gyrokinetic Fokker-Planck collision operator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Li, B ; Ernst, D R</creator><creatorcontrib>Li, B ; Ernst, D R</creatorcontrib><description>The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles, momentum, and energy, while ensuring non-negative entropy production. Finite gyroradius effects in both field-particle and test-particle terms are evaluated. When implemented in gyrokinetic simulations, these effects can be precomputed. The field-particle operator at each time step requires the evaluation of a single two-dimensional integral, and is not only more accurate, but appears to be less expensive to evaluate than conserving model operators.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.106.195002</identifier><identifier>PMID: 21668167</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLISIONS ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; ENTROPY ; EQUATIONS ; FOKKER-PLANCK EQUATION ; MASS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICAL PROPERTIES ; PLASMA ; SIMULATION ; TEST PARTICLES ; THERMODYNAMIC PROPERTIES ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Physical review letters, 2011-05, Vol.106 (19), p.195002-195002</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21668167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21538335$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, B</creatorcontrib><creatorcontrib>Ernst, D R</creatorcontrib><title>Gyrokinetic Fokker-Planck collision operator</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles, momentum, and energy, while ensuring non-negative entropy production. Finite gyroradius effects in both field-particle and test-particle terms are evaluated. When implemented in gyrokinetic simulations, these effects can be precomputed. The field-particle operator at each time step requires the evaluation of a single two-dimensional integral, and is not only more accurate, but appears to be less expensive to evaluate than conserving model operators.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLISIONS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENTROPY</subject><subject>EQUATIONS</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>MASS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PLASMA</subject><subject>SIMULATION</subject><subject>TEST PARTICLES</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo10EFLw0AQBeBFFFurf6EUPHgxdSa72Z0cpdgqFCyi55BspnRNmq3ZrdB_b6H19C4fj8cTYowwRQT5tNocwgf_LjnGKYKeYp4BpBdiiGDyxCCqSzEEkJjkAGYgbkL4BgBMNV2LQYpaE2ozFI-LQ-8b13F0djL3TcN9smrLzjYT69vWBee7id9xX0bf34qrddkGvjvnSHzNXz5nr8nyffE2e14mHjXFhOoqq1UJOddkKlLEa6WNKblaZ4qMzkgqslYB11amBBVQyiUx52AsmFqOxP2p14foimBdZLuxvuvYxiLFTJKU2VE9nNSu9z97DrHYumC5Pa5nvw8FGcy10ikc5fgs99WW62LXu23ZH4r_G-QfqGVg2A</recordid><startdate>20110513</startdate><enddate>20110513</enddate><creator>Li, B</creator><creator>Ernst, D R</creator><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110513</creationdate><title>Gyrokinetic Fokker-Planck collision operator</title><author>Li, B ; Ernst, D R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o168t-8db5d4a09ed87b848ef4677aebf5487658348cc40edc3280b082ea8ee907c07d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLISIONS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENTROPY</topic><topic>EQUATIONS</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>MASS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PLASMA</topic><topic>SIMULATION</topic><topic>TEST PARTICLES</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, B</creatorcontrib><creatorcontrib>Ernst, D R</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, B</au><au>Ernst, D R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gyrokinetic Fokker-Planck collision operator</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-05-13</date><risdate>2011</risdate><volume>106</volume><issue>19</issue><spage>195002</spage><epage>195002</epage><pages>195002-195002</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles, momentum, and energy, while ensuring non-negative entropy production. Finite gyroradius effects in both field-particle and test-particle terms are evaluated. When implemented in gyrokinetic simulations, these effects can be precomputed. The field-particle operator at each time step requires the evaluation of a single two-dimensional integral, and is not only more accurate, but appears to be less expensive to evaluate than conserving model operators.</abstract><cop>United States</cop><pmid>21668167</pmid><doi>10.1103/PhysRevLett.106.195002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-05, Vol.106 (19), p.195002-195002
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_21538335
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLISIONS
DIFFERENTIAL EQUATIONS
ELEMENTARY PARTICLES
ENTROPY
EQUATIONS
FOKKER-PLANCK EQUATION
MASS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICAL PROPERTIES
PLASMA
SIMULATION
TEST PARTICLES
THERMODYNAMIC PROPERTIES
TWO-DIMENSIONAL CALCULATIONS
title Gyrokinetic Fokker-Planck collision operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gyrokinetic%20Fokker-Planck%20collision%20operator&rft.jtitle=Physical%20review%20letters&rft.au=Li,%20B&rft.date=2011-05-13&rft.volume=106&rft.issue=19&rft.spage=195002&rft.epage=195002&rft.pages=195002-195002&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.106.195002&rft_dat=%3Cproquest_osti_%3E871964620%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o168t-8db5d4a09ed87b848ef4677aebf5487658348cc40edc3280b082ea8ee907c07d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=871964620&rft_id=info:pmid/21668167&rfr_iscdi=true