Loading…
Generalized thermalization in an integrable lattice system
After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various on...
Saved in:
Published in: | Physical review letters 2011-04, Vol.106 (14), p.140405, Article 140405 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce a microcanonical version of the GGE and provide a justification of the GGE based on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (≈10(10) eigenstates) validate our approach. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.106.140405 |