Loading…
An Upper Bound to the Space Density of Interstellar Comets
Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temp...
Saved in:
Published in: | The Astronomical journal 2011-05, Vol.141 (5), p.155-jQuery1323897865395='48' |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temperatures, then these DBs have faced minimal impact by interstellar comets during their 50 Myr cooling age; interstellar iceballs with radii between 10 m and 2 km contain less than 1% of all interstellar oxygen. This analysis suggests that most stars do not produce comets at the rate predicted by 'optimistic' scenarios for the formation of the Oort Cloud. |
---|---|
ISSN: | 1538-3881 0004-6256 1538-3881 |
DOI: | 10.1088/0004-6256/141/5/155 |