Loading…

An Upper Bound to the Space Density of Interstellar Comets

Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temp...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2011-05, Vol.141 (5), p.155-jQuery1323897865395='48'
Main Author: Jura, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temperatures, then these DBs have faced minimal impact by interstellar comets during their 50 Myr cooling age; interstellar iceballs with radii between 10 m and 2 km contain less than 1% of all interstellar oxygen. This analysis suggests that most stars do not produce comets at the rate predicted by 'optimistic' scenarios for the formation of the Oort Cloud.
ISSN:1538-3881
0004-6256
1538-3881
DOI:10.1088/0004-6256/141/5/155