Loading…
Integrable modification of the critical Chalker-Coddington network model
We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop f...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2011-10, Vol.84 (14), Article 144201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other two branches (3,4) couple the two loop flavors, and relate to an SU(2){sub r}xSU(2){sub r}/SU(2){sub 2r} Wess-Zumino-Witten (WZW) coset model for the particular values n=-2cos[{pi}/(r+2)], where r is a positive integer. The truncated Chalker-Coddington model is the n=0 point of branch 4. By numerical diagonalization, we find that its universality class is neither an analytic continuation of the WZW coset nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.84.144201 |