Loading…

Observation of proximities between spin-1/2 and quadrupolar nuclei: which heteronuclear dipolar recoupling method is preferable?

We have recently shown that the dipolar-mediated heteronuclear multiple-quantum coherence (D-HMQC) method allows observing through-space proximities between spin-1/2 ((1)H, (13)C, (31)P...) and quadrupolar ((23)Na, (27)Al...) nuclei. However, the D-HMQC effectiveness depends on the choice of the het...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2012-10, Vol.137 (14), p.144201-144201
Main Authors: Lu, X, Lafon, O, Trébosc, J, Tricot, G, Delevoye, L, Méar, F, Montagne, L, Amoureux, J P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently shown that the dipolar-mediated heteronuclear multiple-quantum coherence (D-HMQC) method allows observing through-space proximities between spin-1/2 ((1)H, (13)C, (31)P...) and quadrupolar ((23)Na, (27)Al...) nuclei. However, the D-HMQC effectiveness depends on the choice of the heteronuclear dipolar recoupling sequence. Here, we compare the efficiency and the robustness of four rotor-synchronized sequences: the symmetry-based ones, R4(1)(2)R4(1)(-2) and its super-cycled version, SR4(1)(2), and two schemes based on simultaneous amplitude and frequency modulations, denoted SFAM-1 and SFAM-2. For the SFAM methods, we point out efficient recoupling conditions that facilitate their experimental optimization and we introduce analytical expressions for the buildup of D-HMQC signal in the case of an isolated spin pair. We show that the main differences between these four sequences lie in the number of adjustable parameters and in their robustness with respect to chemical shift and homonuclear dipolar interactions. The relative performances of these four recoupling sequences are analyzed using average Hamiltonian theory, numerical simulations, and (27)Al-{(31)P} D-HMQC experiments on crystalline aluminophosphate.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4753987