Loading…

Nanochemical effects in femtosecond laser ablation of metals

We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material ma...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2013-02, Vol.102 (7)
Main Authors: Vorobyev, A. Y., Guo, Chunlei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4793521