Loading…
Inter-strain heterogeneity in rat hepatic transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
The biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been the subject of intense study for decades. It is now clear that essentially all TCDD-induced toxicities are mediated by DNA–protein interactions involving the Aryl Hydrocarbon Receptor (AHR). Nevertheless, it re...
Saved in:
Published in: | Toxicology and applied pharmacology 2012-04, Vol.260 (2), p.135-145 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been the subject of intense study for decades. It is now clear that essentially all TCDD-induced toxicities are mediated by DNA–protein interactions involving the Aryl Hydrocarbon Receptor (AHR). Nevertheless, it remains unknown which AHR target genes cause TCDD toxicities. Several groups, including our own, have developed rodent model systems to probe these questions. mRNA expression profiling of these model systems has revealed significant inter-species heterogeneity in rodent hepatic responses to TCDD. It has remained unclear if this variability also exists within a species, amongst rodent strains. To resolve this question, we profiled the hepatic transcriptomic response to TCDD of diverse rat strains (L-E, H/W, F344 and Wistar rats) and two lines derived from L-E×H/W crosses, at consistent age, sex, and dosing (100μg/kg TCDD for 19h). Using this uniquely consistent dataset, we show that the majority of TCDD-induced alterations in mRNA abundance are strain/line-specific: only 11 genes were affected by TCDD across all strains, including well-known dioxin-responsive genes such as Cyp1a1 and Nqo1. Our analysis identified two novel universally dioxin-responsive genes as well as 4 genes induced by TCDD in dioxin-sensitive rats only. These 6 genes are strong candidates to explain TCDD-related toxicities, so we validated them using 152 animals in time-course (0 to 384h) and dose–response (0 to 3000μg/kg) experiments. This study reveals that different rat strains exhibit dramatic transcriptional heterogeneity in their hepatic responses to TCDD and that inter-strain comparisons can help identify candidate toxicity-related genes. |
---|---|
ISSN: | 0041-008X 1096-0333 |
DOI: | 10.1016/j.taap.2012.02.001 |