Loading…
K-shell emission trends from 60 to 130 cm/ μ s stainless steel implosions
Recent experiments at the 20 MA Z Accelerator have demonstrated, for the first time, implosion velocities up to 110–130 cm/μs in imploding stainless steel wire arrays. These velocities, the largest inferred in a magnetically driven implosion, lead to ion densities of 2 × 1020 cm−3 with electron temp...
Saved in:
Published in: | Physics of plasmas 2013-10, Vol.20 (10) |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent experiments at the 20 MA Z Accelerator have demonstrated, for the first time, implosion velocities up to 110–130 cm/μs in imploding stainless steel wire arrays. These velocities, the largest inferred in a magnetically driven implosion, lead to ion densities of 2 × 1020 cm−3 with electron temperatures of ∼5 keV. These plasma conditions have resulted in significant increases in the K-shell radiated output of 5–10 keV photons, radiating powers of >30 TW and yields >80 kJ, making it the brightest laboratory x-ray source in this spectral region. These values represent a doubling of the peak power and a 30% increase in the yield relative to previous studies. The experiments also included wire arrays with slower implosions, which were observed to have lower temperatures and reduced K-shell output. These colder pinches, however, radiated 260 TW in the soft x-ray region, making them one of the brightest soft x-ray sources available. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4823711 |