Loading…
The Dirac point electron in zero-gravity Kerr–Newman spacetime
Dirac’s wave equation for a point electron in the topologically nontrivial maximal analytically extended electromagnetic Kerr–Newman spacetime is studied in a limit G → 0, where G is Newton’s constant of universal gravitation. The following results are obtained: the formal Dirac Hamiltonian on the s...
Saved in:
Published in: | Journal of mathematical physics 2015-04, Vol.56 (4), p.1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dirac’s wave equation for a point electron in the topologically nontrivial maximal analytically extended electromagnetic Kerr–Newman spacetime is studied in a limit G → 0, where G is Newton’s constant of universal gravitation. The following results are obtained: the formal Dirac Hamiltonian on the static spacelike slices is essentially self-adjoint and the spectrum of the self-adjoint extension is symmetric about zero, featuring a continuum with a gap about zero that, under two smallness conditions, contains a point spectrum. The symmetry result extends to the Dirac operator on a generalization of the zero-G Kerr–Newman spacetime with different electric-monopole/magnetic-dipole-moment ratios. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4918361 |