Loading…

Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2015-10, Vol.107 (16)
Main Authors: Yu, Zhongwei, Lu, Jiawen, Qian, Shengyi, Misra, Soumyadeep, Yu, Linwei, Xu, Jun, Xu, Ling, Wang, Junzhuan, Shi, Yi, Chen, Kunji, Roca i Cabarrocas, Pere
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4933274