Loading…

Electron collisions with methyl-substituted ethylenes: Cross section measurements and calculations for 2-methyl-2-butene and 2,3-dimethyl-2-butene

We report electron-scattering cross sections determined for 2-methyl-2-butene [(H3C)HC = C(CH3)2] and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5-300 eV range, using a linear electron-transmis...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2015-08, Vol.143 (6), p.064306-064306
Main Authors: Szmytkowski, Czesław, Stefanowska, Sylwia, Zawadzki, Mateusz, Ptasińska-Denga, Elżbieta, Możejko, Paweł
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report electron-scattering cross sections determined for 2-methyl-2-butene [(H3C)HC = C(CH3)2] and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5-300 eV range, using a linear electron-transmission technique. The experimental TCS energy dependences for the both targets appear to be very similar with respect to the shape. In each TCS curve, three features are discernible: the resonant-like structure located around 2.6-2.7 eV, the broad distinct enhancement peaking near 8.5 eV, and a weak hump in the vicinity of 24 eV. Theoretical integral elastic (ECS) and ionization (ICS) cross sections were computed up to 3 keV by means of the additivity rule (AR) approximation and the binary-encounter-Bethe method, respectively. Their sums, (ECS+ICS), are in a reasonable agreement with the respective measured TCSs. To examine the effect of methylation of hydrogen sides in the ethylene [H2C = CH2] molecule on the TCS, we compared the TCS energy curves for the sequence of methylated ethylenes: propene [H2C = CH(CH3)], 2-methylpropene [H2C = C(CH3)2], 2-methyl-2-butene [(H3C)HC = C(CH3)2], and 2,3-dimethyl-2-butene [(H3C)2C = C(CH3)2], measured in the same laboratory. Moreover, the isomeric effect is also discussed for the C5H10 and C6H12 compounds.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4927703