Loading…

Combination of the Laguerre Transform with the Boundary-element Method for the Solution of Integral Equations with Retarded Kernel

We apply the Laguerre transform with respect to time to a time-dependent boundary-value integral equation encountered in the solution of three-dimensional Dirichlet initial-boundary-value problems for the homogeneous wave equation with homogeneous initial conditions by using the retarded potential o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019, Vol.236 (1), p.98-114
Main Authors: Litynskyy, S. V., Muzychuk, Yu. А., Muzychuk, А. О.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We apply the Laguerre transform with respect to time to a time-dependent boundary-value integral equation encountered in the solution of three-dimensional Dirichlet initial-boundary-value problems for the homogeneous wave equation with homogeneous initial conditions by using the retarded potential of single layer. The obtained system of boundary integral equations is reduced to a sequence of Fredholm integral equations of the first kind that differ solely by the recursively dependent right-hand sides. To find their numerical solution, we use the boundary-element method. We establish an asymptotic estimate of the error of numerical solution and present the results of numerical simulations aimed at finding the solutions of retarded-potential integral equations for model examples.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-4100-x