Loading…
Front Propagation for Reaction–Diffusion Equations in Composite Structures
We consider asymptotic problems concerning the motion of interface separating the regions of large and small values of the solution of a reaction–diffusion equation in the media consisting of domains with different characteristics (composites). Under certain conditions, the motion can be described b...
Saved in:
Published in: | Journal of statistical physics 2018-09, Vol.172 (6), p.1663-1681 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider asymptotic problems concerning the motion of interface separating the regions of large and small values of the solution of a reaction–diffusion equation in the media consisting of domains with different characteristics (composites). Under certain conditions, the motion can be described by the Huygens principle in the appropriate Finsler (e.g., Riemannian) metric. In general, the motion of the interface has, in a sense, non-local nature. In particular, the interface may move by jumps. We are mostly concerned with the nonlinear term that is of KPP type. The results are based on limit theorems for large deviations. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-018-2112-z |