Loading…

One-Sided Continuity Properties for the Schonmann Projection

We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2018-08, Vol.172 (4), p.1147-1163
Main Authors: Bethuelsen, Stein Andreas, Conache, Diana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure, the question whether or not it is a Gibbs measure in an almost sure sense remains open. In this paper we study the same measure by interpreting it as a temporal process. One of our main results is that the Schonmann projection is almost surely a regular g -measure. That is, it does possess the corresponding one-sided notion of almost Gibbsianness. We further deduce strong one-sided mixing properties which are of independent interest. Our proofs make use of classical coupling techniques and some monotonicity properties which are known to hold for one-sided, but not two-sided conditioning for FKG measures.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-018-2092-z