Loading…
One-Sided Continuity Properties for the Schonmann Projection
We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure...
Saved in:
Published in: | Journal of statistical physics 2018-08, Vol.172 (4), p.1147-1163 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3 |
container_end_page | 1163 |
container_issue | 4 |
container_start_page | 1147 |
container_title | Journal of statistical physics |
container_volume | 172 |
creator | Bethuelsen, Stein Andreas Conache, Diana |
description | We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure, the question whether or not it is a Gibbs measure in an almost sure sense remains open. In this paper we study the same measure by interpreting it as a temporal process. One of our main results is that the Schonmann projection is almost surely a regular
g
-measure. That is, it does possess the corresponding
one-sided
notion of almost Gibbsianness. We further deduce strong one-sided mixing properties which are of independent interest. Our proofs make use of classical coupling techniques and some monotonicity properties which are known to hold for one-sided, but not two-sided conditioning for FKG measures. |
doi_str_mv | 10.1007/s10955-018-2092-z |
format | article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22783786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547146826</galeid><sourcerecordid>A547146826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3</originalsourceid><addsrcrecordid>eNp1kEtLBDEQhIMouD5-gLcBz9FOZjJJwIssvkBQUM9hNtNxs7jJmmQP-uvNMoIn6UNDd1VRfIScMbhgAPIyM9BCUGCKctCcfu-RGROSU92zdp_MADinnWTikBzlvAIArbSYkaungPTFjzg28xiKD1tfvprnFDeYisfcuJiassTmxS5jWA8h7J4rtMXHcEIO3PCR8fR3H5O325vX-T19fLp7mF8_UtuqttBOoRgXC66ElqBsC61gyEbXdc5J0FJLh520iuEAXI-dbQehFpIPVjDN-kV7TM6n3JiLN9n6gnZpYwi1huFcqlaq_k-1SfFzi7mYVdymUIsZDpLLnkshq-piUr0PH2h8cLGkwdYZce1rJjpf79eisup6xXexbDLYFHNO6Mwm-fWQvgwDs2NvJvamsjc79ua7evjkyVUb3jH9Vfnf9ANADIU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072762757</pqid></control><display><type>article</type><title>One-Sided Continuity Properties for the Schonmann Projection</title><source>Springer Nature</source><creator>Bethuelsen, Stein Andreas ; Conache, Diana</creator><creatorcontrib>Bethuelsen, Stein Andreas ; Conache, Diana</creatorcontrib><description>We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure, the question whether or not it is a Gibbs measure in an almost sure sense remains open. In this paper we study the same measure by interpreting it as a temporal process. One of our main results is that the Schonmann projection is almost surely a regular
g
-measure. That is, it does possess the corresponding
one-sided
notion of almost Gibbsianness. We further deduce strong one-sided mixing properties which are of independent interest. Our proofs make use of classical coupling techniques and some monotonicity properties which are known to hold for one-sided, but not two-sided conditioning for FKG measures.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2092-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COUPLING ; CRITICAL TEMPERATURE ; ISING MODEL ; Mathematical and Computational Physics ; ONE-DIMENSIONAL CALCULATIONS ; Physical Chemistry ; Physics ; Physics and Astronomy ; Projection ; Properties (attributes) ; Quantum Physics ; SIMULATION ; Statistical Physics and Dynamical Systems ; Theoretical ; Two dimensional models ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Journal of statistical physics, 2018-08, Vol.172 (4), p.1147-1163</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3</citedby><cites>FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3</cites><orcidid>0000-0003-0569-2061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22783786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bethuelsen, Stein Andreas</creatorcontrib><creatorcontrib>Conache, Diana</creatorcontrib><title>One-Sided Continuity Properties for the Schonmann Projection</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure, the question whether or not it is a Gibbs measure in an almost sure sense remains open. In this paper we study the same measure by interpreting it as a temporal process. One of our main results is that the Schonmann projection is almost surely a regular
g
-measure. That is, it does possess the corresponding
one-sided
notion of almost Gibbsianness. We further deduce strong one-sided mixing properties which are of independent interest. Our proofs make use of classical coupling techniques and some monotonicity properties which are known to hold for one-sided, but not two-sided conditioning for FKG measures.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COUPLING</subject><subject>CRITICAL TEMPERATURE</subject><subject>ISING MODEL</subject><subject>Mathematical and Computational Physics</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Projection</subject><subject>Properties (attributes)</subject><subject>Quantum Physics</subject><subject>SIMULATION</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Two dimensional models</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLBDEQhIMouD5-gLcBz9FOZjJJwIssvkBQUM9hNtNxs7jJmmQP-uvNMoIn6UNDd1VRfIScMbhgAPIyM9BCUGCKctCcfu-RGROSU92zdp_MADinnWTikBzlvAIArbSYkaungPTFjzg28xiKD1tfvprnFDeYisfcuJiassTmxS5jWA8h7J4rtMXHcEIO3PCR8fR3H5O325vX-T19fLp7mF8_UtuqttBOoRgXC66ElqBsC61gyEbXdc5J0FJLh520iuEAXI-dbQehFpIPVjDN-kV7TM6n3JiLN9n6gnZpYwi1huFcqlaq_k-1SfFzi7mYVdymUIsZDpLLnkshq-piUr0PH2h8cLGkwdYZce1rJjpf79eisup6xXexbDLYFHNO6Mwm-fWQvgwDs2NvJvamsjc79ua7evjkyVUb3jH9Vfnf9ANADIU8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Bethuelsen, Stein Andreas</creator><creator>Conache, Diana</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0569-2061</orcidid></search><sort><creationdate>20180801</creationdate><title>One-Sided Continuity Properties for the Schonmann Projection</title><author>Bethuelsen, Stein Andreas ; Conache, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COUPLING</topic><topic>CRITICAL TEMPERATURE</topic><topic>ISING MODEL</topic><topic>Mathematical and Computational Physics</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Projection</topic><topic>Properties (attributes)</topic><topic>Quantum Physics</topic><topic>SIMULATION</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Two dimensional models</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bethuelsen, Stein Andreas</creatorcontrib><creatorcontrib>Conache, Diana</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bethuelsen, Stein Andreas</au><au>Conache, Diana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Sided Continuity Properties for the Schonmann Projection</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>172</volume><issue>4</issue><spage>1147</spage><epage>1163</epage><pages>1147-1163</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In 1989 Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research which have revealed further properties of this measure, the question whether or not it is a Gibbs measure in an almost sure sense remains open. In this paper we study the same measure by interpreting it as a temporal process. One of our main results is that the Schonmann projection is almost surely a regular
g
-measure. That is, it does possess the corresponding
one-sided
notion of almost Gibbsianness. We further deduce strong one-sided mixing properties which are of independent interest. Our proofs make use of classical coupling techniques and some monotonicity properties which are known to hold for one-sided, but not two-sided conditioning for FKG measures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2092-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0569-2061</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2018-08, Vol.172 (4), p.1147-1163 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_osti_scitechconnect_22783786 |
source | Springer Nature |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COUPLING CRITICAL TEMPERATURE ISING MODEL Mathematical and Computational Physics ONE-DIMENSIONAL CALCULATIONS Physical Chemistry Physics Physics and Astronomy Projection Properties (attributes) Quantum Physics SIMULATION Statistical Physics and Dynamical Systems Theoretical Two dimensional models TWO-DIMENSIONAL CALCULATIONS |
title | One-Sided Continuity Properties for the Schonmann Projection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Sided%20Continuity%20Properties%20for%20the%20Schonmann%20Projection&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Bethuelsen,%20Stein%20Andreas&rft.date=2018-08-01&rft.volume=172&rft.issue=4&rft.spage=1147&rft.epage=1163&rft.pages=1147-1163&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2092-z&rft_dat=%3Cgale_osti_%3EA547146826%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-48e5dbb2859708c30351e1df44ff709797fe47c81ea029d4c3a58b72ac51916b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072762757&rft_id=info:pmid/&rft_galeid=A547146826&rfr_iscdi=true |