Loading…

Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Manganese Removal

In the earlier study, a dynamic model for the BOF process based on the multizone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. The study predicts that temperature at the slag–metal reaction...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2018-10, Vol.49 (5), p.2191-2208
Main Authors: Rout, Bapin Kumar, Brooks, Geoffrey, Akbar Rhamdhani, M., Li, Zushu, Schrama, Frank N. H., van der Knoop, Willem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the earlier study, a dynamic model for the BOF process based on the multizone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. The study predicts that temperature at the slag–metal reaction interface plays a major role in the Mn reaction kinetics. Further, mathematical treatments to simulate the transient rate parameters associated with each reaction interface have been developed. The model calculations of Mn removal rate obtained from different zones of the converter predicts that the first stage of the blow is dominated by the oxidation of Mn at the jet impact zone, albeit some additional Mn refining has been observed as a result of the oxidation of metal droplets in emulsion phase. The simulation result shows that the reversion of Mn from slag to metal primarily takes place at the metal droplet in the emulsion due to an increase in slag–metal interface temperature during the middle stage of blowing. In the final stage of the blow, the competition between simultaneous reactions in jet impact and emulsion zone controls the direction of mass flow of manganese. Further, the model prediction shows that the Mn refining in the emulsion is a strong function of droplet diameter and the residence time. Smaller sized droplets approach equilibrium quickly and thus contribute to a significant Mn conversion between slag and metal compared to the larger sized ones. The overall model prediction for Mn in the hot metal has been found to be in good agreement with two data sets obtained from different size converters reported in the literature.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-018-1306-8