Loading…
A 1.9 EARTH RADIUS ROCKY PLANET AND THE DISCOVERY OF A NON-TRANSITING PLANET IN THE KEPLER-20 SYSTEM
Kepler-20 is a solar-type star ( V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ∼1.6 has recently been proposed by several artic...
Saved in:
Published in: | The Astronomical journal 2016-12, Vol.152 (6), p.160 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Kepler-20 is a solar-type star (
V
= 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ∼1.6
has recently been proposed by several articles in the literature. Kepler-20b (
∼ 1.9
) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the
Kepler
data and an asteroseismic analysis of the host star (
=
and
=
). Kepler-20b is a
planet in a 3.7 day period with a mass of
, resulting in a mean density of
, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of
and an orbital period of ∼34 days in the gap between Kepler-20f (
P
∼ 11 days) and Kepler-20d (
P
∼ 78 days). |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/0004-6256/152/6/160 |