Loading…
Generation of regulable EGFRvIII targeted chimeric antigen receptor T cells for adoptive cell therapy of glioblastoma
Adoptive immunotherapy using chimeric antigen receptors-modified T cells (CAR-T) is a promising approach for cancer treatment. However, CARs currently applied in the clinics cannot be effectively regulated and the safety of CAR-T cell therapies remains a major concern. To improve the safety of CAR-T...
Saved in:
Published in: | Biochemical and biophysical research communications 2018-12, Vol.507 (1-4), p.59-66 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adoptive immunotherapy using chimeric antigen receptors-modified T cells (CAR-T) is a promising approach for cancer treatment. However, CARs currently applied in the clinics cannot be effectively regulated and the safety of CAR-T cell therapies remains a major concern. To improve the safety of CAR-T cells, we designed a synthetic splitting CAR (ssCAR) that can regulate T cell functions exogenously. Epidermal growth factor receptor variant III (EGFRvIII) was used as a molecular target for ssCAR. Our results indicate that both EGFRvIII and small molecule are needed for the activation of the ssCAR-T cells. AP21967 dose-dependently increased the expression of T cell activation, production of cytokines and extent of cell lysis. In conclusion, the gene switch designed in this study allows for temporal and spatial control over engineered T cells in a dose-and time-dependent manner by AP21967. Our work demonstrates the feasibility and improved safety profile of this novel treatment approach. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2018.10.151 |