Loading…

Effect of Approach Speed and Electrode Geometry on Electrostatic Discharges Off Floating Dielectrics

With the damaging effects of electrostatic discharges (ESDs), it is important to study them within various parameter regimes relevant to real-world scenarios. One such scenario studied here is a floating dielectric with no nearby ground plane with a grounded object approaching at a high rate of spee...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2024-03, Vol.52 (3), p.922-929
Main Authors: Esser, B., Cardenas, Z., Mockert, J. T., Stephens, J. C., Dickens, J. C., Mankowski, J. J., Neuber, A. A., Friesen, D., Hattz, D., Nelson, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the damaging effects of electrostatic discharges (ESDs), it is important to study them within various parameter regimes relevant to real-world scenarios. One such scenario studied here is a floating dielectric with no nearby ground plane with a grounded object approaching at a high rate of speed. One may encounter this scenario when moving objects by hand. Discharge current and radiated fields are captured for discharges drawn from polytetrafluoroethylene (PTFE) and poly methyl methacrylate (PMMA) with approach speeds ranging from 20 to 100 mm/s. Previous studies have shown that at lower speeds in metal-to-metal or metal-to-ground backed dielectric geometries, the peak current and discharge distance decrease with increasing speed. However, in the speed range studied here, an increase in distance and current are observed for increasing speed. Namely, the highest speeds coincide with the highest peak currents and discharge distances of approximately 800 mA and up to 24 mm. With no grounded backing, as opposed to setups in other ESD studies, the electric field between the dielectric and an approaching electrode has a more uniform distribution with highest fields at the electrode, which is elucidated to be the driving factor in the differences revealed in this study. Two spheres of differing diameters and a conical electrode are used to draw discharges off the dielectric surfaces. Captured radiated fields via B-dot sensor, plasma imagery via intesified charge-coupled device (ICCD), and mapping of surface potential reveal that a majority of the energy lost during a discharge goes to gas losses and radiated fields.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2024.3378169