Loading…
Anomalous magnetic noise in an imperfectly flat landscape in the topological magnet Dy 2 Ti 2 O 7
Noise generated by motion of charge and spin provides a unique window into materials at the atomic scale. From temperature of resistors to electrons breaking into fractional quasiparticles, "listening" to the noise spectrum is a powerful way to decode underlying dynamics. Here, we use ultr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-02, Vol.119 (5) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Noise generated by motion of charge and spin provides a unique window into materials at the atomic scale. From temperature of resistors to electrons breaking into fractional quasiparticles, "listening" to the noise spectrum is a powerful way to decode underlying dynamics. Here, we use ultrasensitive superconducting quantum interference device (SQUIDs) to probe the puzzling noise in a frustrated magnet, the spin-ice compound Dy
Ti
O
(DTO), revealing cooperative and memory effects. DTO is a topological magnet in three dimensions-characterized by emergent magnetostatics and telltale fractionalized magnetic monopole quasiparticles-whose real-time dynamical properties have been an enigma from the very beginning. We show that DTO exhibits highly anomalous noise spectra, differing significantly from the expected Brownian noise of monopole random walks, in three qualitatively different regimes: equilibrium spin ice, a "frozen" regime extending to ultralow temperatures, and a high-temperature "anomalous" paramagnet. We present several distinct mechanisms that give rise to varied colored noise spectra. In addition, we identify the structure of the local spin-flip dynamics as a crucial ingredient for any modeling. Thus, the dynamics of spin ice reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such, it points to intriguing cooperative and memory effects for a broad class of magnetic materials. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2117453119 |